BASE STABILIZATION IN ALASKA

2011 Asphalt Summit Anchorage November 1, 2011

Web link: Alaska Soil Stabilization Design Guide

http://www.dot.state.ak.us/stwddes/research/assets/p df/fhwa_ak_rd_01_06b.pdf

Topics

- Background information
- Why Base Stabilization?
- Material Selection & Suitability
- Design Process
- What has been used in Alaska
- Equipment and Materials Availability
- Construction Issues in Alaska
- Weather
- Expected Properties

Why Base Stabilization?

- Improves Road Foundation to Carry Load
- Can Reduce Frost Susceptibility
- **Can be a Temporary Wearing Surface**
- Improves Marginal Materials (base and/or subgrade)
- Dust control
- Policy: AKFPD Policy and Procedure
- □ (GP -5, GP 6, GP 7 & Section 2.3
- "To the extent possible, eliminate load restrictions"

Types of Stabilization

- lime lime/fly ash portland cement asphalt Modifiers

- Modifiers

 Lime
 Chemicals

 Waterproofers

 bitumens
 chemicals

 Water-retainers

 Salts
 Others?

Most Widely Used Stabilization Admixtures in Alaska

- Foamed Asphalt (uses paving grade asphalt)

- Enzymes (ParZyme and others)

Description of Stabilizer Effects

- Cementing agents (Lime, Cement, Asphalt)

 - Portland cement & lime react with clay minerals (pozzolanic reaction).
 - Lime/Fly Ash effective when the clay mineral contents are low or non- existent.
 - Portland Cement Hydrates and produces a strong cementing agent. Increases *strength*. Can result in reduced pavement thickness.

Description of Stabilizer Effect

Description of Stabilizer Effect

- - Prevents water from reaching water sensitive soils
- Water retainers (Salts: Calcium, Magnesium) Sodium chloride or others)

 - Lowers freezing point mitigates frost damage

Factors to Consider in Selection of Stabilization Admixture

- Availability of equipment
- Economics (equipment and materials)

Selection of Stabilizer Type

- Most Effective Stabilizers
- 1. Coarse granular soils Asphalt, portland cement, lime-fly ash

- Portland cement, lime-fly ash, asphalt, chlorides

3. Clays of low plasticity Portland cement, chemical waterproofers, lime, lime-fly ash

- 4. Clays of high plasticity Lime

Guide to Choice of Admixtures

-			

Climatic Limi	tations/
Construction Safet	y Procedures:
Asphalt Pro	oducts
Climatic Limits	Construction Safety Precautions
 Temperature should be above	 Some cutbacks have
50 F (10 C) when using emulsions Air temperature should be 40 F	flash and fire points below
(5 C) and rising when placing thin	100 F (40 C) Hot mixed asphalt
lifts (1-in.) of hot mixed asphalt	concrete temperatures
concrete Hot, dry weather is preferred for	may be as high as 350 F
all types of asphalt stabilization	(175 C)

Climatic	Limitations/
Construction 3	Safety Procedures:
Cement and	Cement-Fly Ash

Climatic Limitations	Construction Safety Precautions
• Do not use with frozen soils	Cement should not come in
 Air temperature should be 40 F (5 C) and rising 	contact with moist skin for prolonged periods of time
 Complete stabilized layer one week before first hard freeze 	 Safety glasses and proper protective clothing should be worn at all times

-

Construction Safety Procedures: Lime and Lime-Fly Ash			
Climatic Limitations	Construction Safety Precautions		
Do not use with frozen soils	 Quicklime should not come in contact with moist skin 		
 Air temperature should be 40 F (5 C) and rising Two weeks of warm to hot 	• Hydrated lime [Ca(OH) ₂] should not come in contact with moist skin for prolonged periods of time		
weather are desirable prior to fall and winter temperatures	 Safety glasses and proper protective clothing should be worn at all times 		

	Quicklime should not come in contact with moist skin	
be not	• Hydrated lime [Ca(OH) ₂] should not come in contact with moist skin for prolonged periods of time	
or	 Safety glasses and proper protective clothing should be worn at all times 	

Climatic Limitations	Construction Safety Precautions
Do not use with frozen soils	Require MSDS
Salte 22	

Climatic Limitations	Construction Safety
Do not use with frozen soils	Require MSDS for each
Chemicals are more active at igh temperatures	chemical

ASPHALT STABILIZATION PRIMARY METHOD USED IN ALASKA

Stabilization with Asphalt

- Compatible with most soils in Alaska
- Soil asphalt reactions/asphalt breaking and curing
- Properties of treated soils
- Mix design
- Construction
- Examples

Reasons for Use

- Waterproofing fine-grained soils.
- Reduces or eliminates frost susceptibility after treatment
- Improves marginal materials
- Provides temporary/permanent wearing surfaces
- Reduces dust

Types of Asphalts

- **Emulsions** (Anionic and Cationic)
 - Slow setting (SS)
 - Medium setting (MS)
- Cutbacks (generally not available)
 - Slow cure (SC)
 - Medium cure (MC)
 - Rapid cure (RC)
- May be used with lime/cement (1 to 2 %) to expedite breaking or release of diluting agents (water, or solvent).

Emulsified Asphalt.

- Asphalt coment that has been mechanically diluted with the addition of emulsifying agents and water.
- Asphalt emulsions are comprised of ~ 33% water & emulsifying agent, and 67% asphalt residue
- Asphalt residue does all the load carrying work
- All soil particles are well coated
- Depth of treatment typically < 8 inches (in place)</p>

Foamed Asphalt

- I hol paying grade asphalt that is exposed to a small quality of water (typically 2-2.5%), which causes the hol asphalt to expand or foam.
- The expanded asphalt readily coats soil particles it comes in contact with.
- Typically, foamed asphalt preferentially coats the fines portion of the resulting stabilized mixture, leaving the coarse particles nearly uncoated
- Depth of treatment can be > 8 inches, with pad foot compaction equipment for deep stabilization

Suitable Soils

- Non-plastic gravels (PI < 6)

Soil - Asphalt Mechanisms/ Asphalt Breaking and Curing

- Breaking and curing
 Breaking (chemical)

Properties Considered During Mix Design of Treated Soils

Strength and deformation characteristics

- Compressive
- Tensile
- Elastic surme
- Durability
- Freeze-thaw resistance
- Stripping
- Fatigue performance
- Cost issues

Mix Design

Procedures

- Selection of asphalt type and grade
- Approximate quantitie
- Detailed testing procedures
 Modified Marshall, Hveem or other MD procedure, lab compaction at 72° F.
- Typical final asphalt contents
 - 3 to 5%
 - Depends on gradation/absorption/recycled asphalt

Typical Application Rates

- Assumes 2% Residue
- 4″ treatment depth
- 1.8 gal. emulsion, 4.5 lbs cement per yd^2
- 6″ treatment depth
- 2.5 gal. emulsion, 7 lbs of cement per yd^2

Construction Issues

- Mixing (in place or central plant)
- Placement and grading of mixture
- Compaction
- Curing
- Placement of wearing surface (HMA or surface treatment)

Performance and Cost

- Performance- Has been mostly successful
- Typical Modulus obtained: 100 to 130 KSI (fwd backcalculated)
- Cost has not varied significantly over 10 year period, typically

<u>\$1.50 -\$2.50</u> yd²/inch

Includes mixing, asphalt emulsion & cement powder

Expansion Chamber

- Cold water and air are injected simultaneously into the hot asphalt
- The hot asphalt foams explosively and shoots down into the mixing chamber.
 The controlled cleaning and down of the nexter

Reliable Web sites for more information • TAI • AEMA • ARRA • Others

Stabilization with Portland Cement

Several Definitions

- *Cement Stabilized Soil:* Mixture of soil and measured amounts of portland cement and water which is thoroughly mixed, compacted to a high density and protected against moisture loss during a specific curing period.
 Soil-Cement: Hardened material formed by curing a mechanically compacted intimate mixture of pulverized soil, portland cement, and water. Soil-cement contains sufficient cement to pass specified durability tests.

Several Definitions (cont.)

 Cement-Modified Soil: Unhardened or semihardened intimate mixture of pulverized soil, portland cement, and water. Significantly smaller cement contents are used in cement-modified soil than in soil-cement.

Suitable Soil Types

- Good for most sands/gravels
- Also suitable for fine-grained soils with low to medium plasticity (PI <30)

Soil-Cement Reaction

- Ion exchange
- Flocculation
- Pozzolanic reaction
- Carbonation
- Portland cement hydration
- Reactions can be short and long term

Properties of Cement-Treated Soils

- Strength and deformation characteristics
 Tensile
 Modulus
 Fatigue

 - ShrinkageFreeze-thaw resistance
- Surface wear resistance

Mix Design

- Approximate Detailed testing

- Too much can lead to shrinkage cracking

Typical cement contents						
	Classifications	Recommended	Allowable			
AASHTO	USCS	%PC* (wt)	Loss** (%)			
A-1-a	GW, GP, GM, SW, SP, SM	3-5	14			
A-1-b	GM, GP, SM, SP	5-8	14			
A-2	GM, GC, SM, SC	5-9	14			
A-3	SP	7-11	14			
A-4	CL, ML	7-12	10			
A-5	ML, MH, CH	8-13	10			
A-6	CL, CH	9-15	7			
A-7	OH, MH, CH	10-16	7			

Evolution Contents

** Loss in weight after freeze-thaw or wet-dry test (ASTM 599 or 560)

Construction

- Need for surface layer (HMA or surface Treatment)

General Conclusions

- Asphalt and cement have been the most widely used stabilizers in Alaska
- In the past, the performance of the resulting stabilized base work has been mixed
- Recent work has been mixed
 Recent work has been successful with improved equipment, specifications and information
 Stabilization materials and methods continue to be developed
 Our challenge is to use stabilization more frequently

