Warm-Mix Asphalt using Sasobit: The Petersburg-Mitkof Hwy Experience

Bruce Brunette, P.E., SE Region Mati's Engineer Steve Saboundjian, P.E., State Pavement Engineer Alaska DOT&PF

> Asphalt Pavement Summit Anchorage, 18-Nov-09

What is Warm Mix Asphalt?

- Hot Mix Asphalt 280 325°F
- Cold Mix Asphalt ~ 60° F
- Warm Mix Asphalt ~ 200° -270°F

WMA Technology	Process Type				
Advera	Additive/Foaming				
Aspha-min	Additive/Foaming				
Cecabase RT ¹	Chemical Additive				
Double Barrel® Green	Foaming				
Evotherm™	Chemical Additive				
Gencor ¹	Foaming				
(LEA) Low Energy Asphalt	Foaming (moisture in fine aggregate)				
Rediset™ WMX	Chemical Additive				
REVIX™	Chemical Additive				
Sasobit	Organic Additive				
StanSteel ¹	Foaming				
Synthetic Zeolite	Foaming				
Terex ¹	Foaming				

- Wax
- Chemical Additive
- Foaming

- Compaction aid
 Cool-weather paving

- Use of higher percentages of RAP
 Less restriction, enabling more production in in non-attainment areas
- Extend the paving seasonReduced Fuel Usage

3 WMA Projects in Alaska

- Petersburg South Mitkof Highway Project (Sasobit Wax)
- Alaska Highway, Tok, Foaming Project
- EVOTHERM, Anchorage International Airport

Alaskan WMA Demonstration South Mitkof Highway Upgrade Phase II September - October, 08

- CDS Milepoint 16.24 to 23.74

- Paving length = 7.5 miles (39,606 ft)
 Two-lane 24 ft rural highway, unpaved
 AADT = 250, 3% trucks, EAL₂₀₂₆ = 50k
 3-inch Single Lift
- ~ 25,000 Tons WMA
 Contractor: SECON
- Paving: Sep.'08

300° F w/o Wax	260° w/ Wax	
AC Content = 5.0%		
2.5 % Voids (< than desired)	3.5 % Voids (ok)	
VFA 82 % (> than desired)	VFA 76 % (ok)	

Binder Properties with and w/o Additive Acceptance Samples w/o Additive, Before Construction

Construction Samples w/wax for

Test Method	Acceptance	Information	Mean	
T-313 BBR	w/o wax	w/wax		
Stiffness	All 6 ok	All 6 ok		
m-value	All 6 ok	Non ok	.281	
T- 316 BV				
Brkfld. Vis.	All 6 ok	All 6 ok		
T-315 DSR				
G*/Sin δ O, RTFO, PAV	All 6 ok	5 ok, 1 dnp		
ER	All 6 ok	All 6 ok	PG 70-(24,26)	

Final PG Grade with wax

6 samples tested PG 70-24 1 result

PG 70-25 4 results

PG 70-26 1 result

Plant

- Drum Dryer Plant: 350 TPH

- Aggregate source: 1 mile from plant

Ride Measurements PI Simulation LWP

Southbound XL Lake to Ferry Terminal	Northbound Ferry Terminal to XL Lake
Average 3.8 inches/mile (9/14/08)	Average 3.3 inches/mile (9/14/08)
Average 5.2 inches/mile (8/30/09)	Average 4.7 inches/mile (8/29/09)

Rut Measurement Averages LWP in each Lane

Southbound XL Lake to Ferry Terminal	Northbound Ferry Terminal to XL Lake
.006 inches (9/26/2008)	.001 inches (9/26/2008)
.010 inches (7/17/2009)	.015 inches (7/17/2009)

One year later no significant rutting

Laboratory Tests The Asphalt Institute

- Type II-B, 19 mm NMAS PG 58-28+, Binder = 5% , VTM = 2.5% 10 boxes; re-heat, compact

Tests:

- Tensile Strength Ratio: 1 freeze-thaw cycle
 Asphalt Pavement Analyzer: 45°C
 Hamburg Wheel Tracker: 45°C
 Dynamic Modulus: 4°C, 20°C, 35°C

Effect of Moisture on Asphalt Concrete Paving Mixtures AASHTO T283/ASTM D4867							
	Compaction Method: <u>SGC 150mm</u> FreezeThaw <u>x</u>						
Air Voids, % (100(G-F)/G)	Н	7.2	6.5	6.5	6.8	7.1	7.1
Dry Strength, kPa 2P/(tDπ)	S1	507.4		542.8		642.3	500.0
Visual Moisture Damade (0 to 5-strip)	oed)	na	033.3 na	na	032.2 na	na	083.8 na
Average Dry Strength, kPa Average Wet Strength, kPa	S1#5	564.2 583.1					
TSR 100(S2 _{avg} /S1 _{avg})	1			10	3.4		

Asphalt Pavement Analyzer

Dynamic Modulus Comparisons							
		Fre	quency =	= 10 Hz			
	TAI,	1.5% Sa	sobit Mix	, Air Void	ls = 6.7%		
		Dyn.	Modulus	s, ksi	_		
		4 C	20 C	35 C	-		
		1,600	650	200	-		
	Frequency = 10 Hz						
	AUTC, Control Mix, Air Voids = 4.6%						
	Dyn. Modulus, ksi						
		4 C	21 C	38 C	-		
		1,900	800	220	-		

Bid Data for WMA Project

- Mix Price \$60/ton 22,500 tons total (typical price for 401(1))
- AC Price \$750/ton 1145 tons total
- (w/o Wax Additive \$720/ton)

Lessons Learned

- Field density achieved in all cases
- Saved \approx 20-30 % in fuel at the plant (1 gal/ton)
- Temperature at plant hard to regulate
- Mix handled similarly as HMA
- Workers noted no handling difficulties
- No smoke
- Additive didn't seem to affect mix design
- Sasobit does stiffen binder

PG Grading Implications

- Original binder grade met PG 58-28 (PMA)
- Elastic Recovery (AASHTO T-301) > 50%
- After 1.5% Sasol Wax addition
- PG Binder changed to PG 70-25
- Degree of stiffening is crude dependant
- Sasol wax does stiffen the binder
- Elastic recovery was unaffected

What's Next

- More Field Monitoring
- Annual Inspections for the next 2 years

Why Warm Mix?

- Warm Mix can address a variety of needs
 - Improved compaction
 - Fuel Savings
 - Environmental
 - Working conditions
- Significant research already completed
- Future looks warm!

