HMA w/Crumb Rubber

Elmore Rd. Construction 2007 (A partnered job)

Jeff Schrock - Wilder Construction, Proj Supt. Greg Davis – Wilder Construction Paving Supt. Steve Dombrowski – Wilder Quality Control Mgr. Mike Gault – DOT/PF, Project Engr

Why HMA with Crumb Rubber?

- It costs more initially, but the mix with crumb rubber on A -C streets (between 15th and Fireweed) was placed in 1985 (22 years ago)
- For projects developed for pavement rehabilitation, the pavement surface course is approx. 38% of the total project contract cost.
- Typically construction on these roads have;
 - high traffic volumes (high traffic control \$)
 Night paying requirements
 - Night paving requirements

Cost Overview

- Normal HMA made from local aggregates, unmodified asphalt cement = \$65 / ton, 5year (large plastic deformation in heavy city traffic)
- Superpave designed HMA, local aggregates, polymer modified asphalt cement = \$76 / ton, 8 year life (no plastic deformation, more larger aggregate in mix)
- Superpave with "hard aggregate" and polymer modified AC = \$106 / ton, 12-15 year life
- HMA with crumb rubber, polymer modified AC
 \$106/ t, 20 year life

Cost Analysis

- Assume a project with 10,000 tons HMA & HMA surface course = 38% of project cost.
- Normal HMA = \$1.7 million project / 5 years =\$340,000 / year
- Superpave HMA = \$2.0 million / 8 years = \$249,000 / year
- Hard Aggregate HMA = \$2.8 million / 15 year = \$185,000 / year
- CR HMA = \$2.8 million / 20 year = \$138,000 / year

Previous Rubber Mix Projects

- 1981 Upper Huffman Road
- 1985 Seward Highway Rehab.
- 1985 A-C Couplet (Still in place)
- 1986 Minnesota Extension

Mix Properties

- A-C Couplet Plus Ride
- Local crushed
- aggregates.
- AC-5, Neat AC (7.5% Optimum by weight of mix)
- Crumb Rubber, Coarse approx. -1/4" x #16
- 20% Buffings -#20 (2.5% total combined Crumb Rubber + Buffings by weight of mix)
- Abbott Loop Extension HMA VR
 Local Crushed
- Aggregates with more fracture & cubicle shape.
- PG 64-34 Polymer Modified Asphalt Cement (6.9% Optimum by weight of mix)
- 100% Crumb Rubber -1/4"x #10 (2.0% by weight of mix)

Acceptance Testing of Mix

1985

- Solvent Extraction AASHTO T164
- AC Content
- Rubber Content (separated by skimming off rubber floating on the solvent)
- Aggregate Sample for Gradation
- AC Content (AC and Rubber burned off in process)
 Aggregate Sample for Gradation

Ignition "Extraction"

AASHTO T308

2007

Solvent Extraction, Vacuum AASHTO T164

Difficult to use with mixes that contain polymer modified oil, tends to plug the filters.

Nordic Aggregate & Prall Mix Data

- PlusRide: Nordic = 12, Prall = 13
- Type II: Nordic = 12, Prall = 40-50
- SMA Nordic = 12, Prall = 25-40
- Hard Aggr. Nordic = 6-8, Prall = 20
- Type R Nordic = 12 Prall = 8

Liquid Asphalt Testing

- 1986: Viscosity Grading AC 5
- 2007: Performance Grading PG 64-34 (polymer modified)
- Softening Point (ASTM D36)
- Toughness & Tenacity (ASTM D5801)
- Info test: Multiple Stress Creep Recovery (AASHTO TP70)

	~	gnal Binder Tests	TEST	SPECIFICATIONS	
	Cita				
		Specific Gravity @ 25*C	1.004		•
	AASHTO TIM	Specific Gravity @ 15.6°C	1.010		
		lbs/gal.	8.41		
	AASHTO TSI	Softening Point	176	125 min	
	ASTM DSB01	Toughneas	88.1		
	ASTM D9800	Tenacity	80.2	75 in.lbs. min.	
	AASHTO THE	Viscosity, 135°C Pa-s	2.2240	3 так.	
	AASHTO T48	Flash Point COC, °C	230+	230 min.	
	AASITO THE	Hi-Temp. Stiffness (G*/sin 8), kPa Fhase Angle	1.880 48.9°	1.00 min.	
	RIT	O Aged Binder			
	AASHTO T240	Mass Loss After, %	0.32	1.00 max.	
	AASHTO THIS *	Hi-Temp. Stiffness (G*/sin 8), kPa	2.410	2.20 min.	
		Phase Angle	54.1°		
	AASHTO TP19	MSCR, % Recovery @ 100 Ra	96.8k		
		MECR, * Recovery @ 3200 Pa.	96.3%		
	AASHTORN DAV Aged Binder				
	AASETO TSIJ *	IntTemp. Stiffness (G* sin 8), kPe	928	5000 max.	
		Phase Angle	60.1°		
-	AASITO TJ.J **	Creep Stiffness Normal Conditioning			
		S, MRa	206	300 max.	
		m-value	0.356	0.300 min.	
		Physical Hardening		erees addit	
		S. MPa			
		m-value			
	AASHTO T314	Direct Tension			

Crumb Tire Rubber Hot Mix Asphalt The perspective of the contractor materials guy

<u>OVERVIEW</u>

- Pre & Post Bid Considerations
- Crumb Tire Rubber Manufacturing
- Mix Design Concerns
- Process Control and Acceptance Testing Concerns
- Plant Modifications
- Test Strip Learning Curve
- Full Production
- Observations

Pre & Post Bid

- Bid during construction season
- Interpreting section 409
- PG 70-34, w/ 3% -#50 mesh granulated tire rubber
- Aggregate properties
- Crumb rubber properties
- Mix design, production, laying down
- Putting a cost to make it work

Separation process is accomplished using a number of means and methods including magnets, air circulation, vibration, jigging tables and gravity.

The significant portion of processing recycled tire rubber at the finishing facility is geared toward removing the fiberglass & steel belting, stones, nails and debris. It is accomplished while reducing particle size.

Crumb Rubber Mix Ingredients - Proportions & Production				
Coarse Aggregate	46%			
Intermediate Aggregate	14%			
Crushed Fine Aggregate	36%			
Blend sand	4%			
■ Asphalt Cement, PG 64-34 7-2% revised to 6.9%				
Crumb Rubber	2%			
Double Fractured Face	99% (spec' >98%)			
Flat Elongated @ 1:3	7% (spec' <8%)			

Observations

- Our test strip temps. were too high; did not need mix design temps on grade for compaction.
- Based on our experience of three days of production, 2inch lifts offer opportunity for a smoother ride.
- The mix is wet, greasy and tough to make representative splits; smaller on-grade samples are more representative.
- When liquid asphalt wet spots are present, it means inadequate rubber in mix.
- Still things to learn about lift thickness, rolling train and ride.
- It's a good product I embrace; still some bugs to work out of the overall system.

Project Engineer's Comment

- Test Strip
 1st good
 2nd rubber deficiency, flushing, milling difficulties
- Laydown
 Truck Haul (cleaning station),
- Truck Haul (cleaning station),
 Compaction

 thickness change -loose to compacted then 3" to 2"
 Lateral spread

 Takeoff procedures

 Raking hard, segregates easily, bumping joints

 Smoothness 3" with curb & 2" without
 Mix & AC quantity measurement
 Opening to traffic
 Overview , Mix toughness (bob cat turning does not scuff)
 Housekeeping, truck cleaning stations, monitor haul routes