Outline

- Recycling Background
- Hot Central Plant
- Cold In-Place
- Hot In-Place
- Life Cycle Cost Analysis

Outline

- Recycling Background
- Hot Central Plant
- Cold In-Place
- Hot In-Place
- Life Cycle Cost Analysis
Recycling Initiative

- Conservation
 - Materials (aggregate and asphalt binder)
 - Energy (burner fuel and trucking)
- Preservation
 - Environment
 - Existing materials
 - Pavement geometrics
- Economics
 - First cost (structural design and materials)
 - Life cycle cost
 - Reduced user costs (user delays)
 - Margins

Social Responsibility

- Good Environmental Stewards
 - Landfill Diversion
 - Recycling
 - Air Quality – Green House Gases
 - Reduced consumption of virgin materials
- Increased pavement recycling 30-percent
 - 65-million barrels of oil saved

Recycling Quantities and Rates

- Domestic Waste¹
 - 18M tons Paper and Paperboard (25%)
 - 4.2M tons Yard Waste (12%)
 - 0.3M tons Plastic (2%)
 - 2.6M tons Glass (20%)
 - 0.4M tons Tires (17%)
 - 25.5M tons
- Steel Recycling²
 - 76M tons Steel (74%) – US and abroad
- Asphalt Pavement Recycling¹
 - 80M tons Asphalt Pavement (80%)
¹Ref: FHWA and EPA 1993
²Ref: Steel Recycling Institute
Recycling Methods

- Asphalt Pavement Recycling
 - Hot Central Plant
 - Hot In-Place
 - Cold In-Place
 - Recycled Aggregate Base
- Portland Cement Concrete Recycling
 - Recycled Base
 - Aggregate for PCC
 - Aggregate for HMA
 - Aggregate for Chip Seals

Why is Cement and Asphalt Binder Consumption so Important?

Historical Price Increases

Note: Costs assume 9-in for each material, concrete does not include reinforcing steel and joints.

(FHWA)
Why is Energy Consumption so Important?

Historical Crude Oil Prices

(US Dept. of Energy)

Allowable %RAP by Pavement Course

<table>
<thead>
<tr>
<th>State</th>
<th>Specification</th>
<th>Allowable %RAP</th>
<th>E - Engineer</th>
<th>PS - Project Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>2003</td>
<td>200.02</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Alaska</td>
<td>2002</td>
<td>15+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arizona</td>
<td>2001</td>
<td>405</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arkansas</td>
<td>1996</td>
<td>416.03</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>California</td>
<td>expected</td>
<td>39</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Colorado</td>
<td>1999</td>
<td>401.02</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1999</td>
<td>4.06</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Delaware</td>
<td>2001</td>
<td>223.26</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Federal Lands</td>
<td>1996</td>
<td>403.3</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Florida</td>
<td>2004</td>
<td>334.2</td>
<td>30-50</td>
<td>30-50</td>
</tr>
<tr>
<td>Georgia</td>
<td>2001</td>
<td>402.2</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Hawaii</td>
<td>2005</td>
<td>312 & 401</td>
<td>30-40</td>
<td>15</td>
</tr>
<tr>
<td>Idaho</td>
<td>2004</td>
<td>405.02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Illinois</td>
<td>1997</td>
<td>406.1</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Indiana</td>
<td>2005</td>
<td>401.06</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Iowa</td>
<td>2002</td>
<td>2303.02</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Kansas</td>
<td>1990</td>
<td>604.02</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Kentucky</td>
<td>2004</td>
<td>409.03.02</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Louisiana</td>
<td>2000</td>
<td>Table 502-4</td>
<td>20-30</td>
<td>20</td>
</tr>
<tr>
<td>Maine</td>
<td>2002</td>
<td>401.03</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Maryland</td>
<td>2001</td>
<td>904.04.01</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>1995</td>
<td>M3.11.03</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Michigan</td>
<td>2003</td>
<td></td>
<td>25+</td>
<td>25+</td>
</tr>
<tr>
<td>Minnesota</td>
<td>2000</td>
<td>2350.2C</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Mississippi</td>
<td>2003</td>
<td>401.02.3.1</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Missouri</td>
<td>2004</td>
<td>401.3.2 & 402.3</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Montana</td>
<td></td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
</tr>
</tbody>
</table>

E = Engineer – Maximum value determined by the Engineer.
PS = Project Specifications – Maximum value stated in the project specifications.
Allowable %RAP by Pavement Course

<table>
<thead>
<tr>
<th>State</th>
<th>Spec-Reference</th>
<th>Surface Course</th>
<th>Leveling Course</th>
<th>Base Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebraska</td>
<td>2001 1028.01</td>
<td>15-50</td>
<td>15-50</td>
<td>15-50</td>
</tr>
<tr>
<td>Nevada</td>
<td>1997 PS</td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>2002 401.2.7</td>
<td>50</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>New Jersey</td>
<td>2001 903.1</td>
<td>50</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2000 422.27</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>New York</td>
<td>2002 Table 703-09A</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2002 610-3</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>North Dakota</td>
<td>2002 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ohio</td>
<td>2005 302.02 & 401.04</td>
<td>30-50</td>
<td>30</td>
<td>10-20</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1999 708.04</td>
<td>25</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Oregon</td>
<td>2002 SP745</td>
<td>30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>2000 403.2D</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1997 407.02.1</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>South Carolina</td>
<td>2000 401.03F</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>South Dakota</td>
<td>2004 320</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tennessee</td>
<td>2006 411.03</td>
<td>10-25</td>
<td>10-25</td>
<td>10-25</td>
</tr>
<tr>
<td>Texas</td>
<td>1993 247.2</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Utah</td>
<td>2005 2969 2.1F</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Vermont</td>
<td>2001 704.10 b1c</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Virginia</td>
<td>2002 211.03</td>
<td>20+</td>
<td>20+</td>
<td>20+</td>
</tr>
<tr>
<td>Washington</td>
<td>2002 5-04.2</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>West Virginia</td>
<td>2000 401.4.1</td>
<td>15+</td>
<td>15+</td>
<td>15+</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>2006 460.2.5</td>
<td>35</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>Wyoming</td>
<td>1995 401.4.13.2</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

E = Engineer – Maximum value determined by the Engineer.
PS = Project Specifications – Maximum value stated in the project specifications.

Allowable RAP by Pavement Course

Surface Course Allowable %RAP

- 43% of State DOTs Allow 15% RAP in Surface Course HMA
- 75% of State DOTs Allow 10% RAP in Surface Course HMA
Outline
- Recycling Background
- Hot Central Plant
- Cold In-Place
- Hot In-Place
- Life Cycle Cost Analysis

RAP Sources
- Cold Milling
- Full Depth Reclamation
- Plant Waste/Reject

RECYCLED CONCRETE & AC ONLY
LOADS MUST BE INSPECTED AND FEES PAID AT ASPHALT PLANT BEFORE UNLOADING.
VIOLATORS WILL BE PROSECUTED.
Can We Do It?

QC/QA Plan
- RAP Processing
- Mix Design
- HMA Production
 - Virgin asphalt binder
 - Virgin aggregate
 - RAP asphalt binder (higher RAP %)
 - RAP aggregate
- Field Construction
- Performance

Processing RAP
- Scalp +2in material
- RAP breakers can be used
- Crusher
 - Horizontal impact
 - Hammermill impact
 - Jaw/roll
- Fractionating (~>15% RAP)
RAP Processing

Stockpiling
- Separate based on sources/mix types
- Avoid consolidation
- No loaders, dozers or trucks on stockpile
- Protect from moisture intrusion
- Protect from contamination

Stockpiling RAP
- Large, conical stockpiles preferred
- RAP does not re-compact
- Forms “crust” (200-250 mm) 8-10 inches
- Crust sheds water and easily broken
- RAP under crust easy to manage
Disadvantage of Horizontal RAP Stockpiles

- More crust develops
- May require re-crushing
- Slows production
- Drainage poor
- Increase drying costs

Processed RAP

Feeding RAP after Rainfall

- Remove wet part of open face and set aside to dry
- Keeps RAP percentage up and drying costs down, ensures adequate drying of RAP
Feeding RAP

- “Trickle feed” RAP bin when charging bin with loader
 - RAP more prone to bridging than fine aggregates
 - Ensures uniform and consistent feed of RAP

Feeding RAP

- Unload RAP bin each night and after one hour down time
 - Helps keep feed uniform, especially on hot humid days
 - Do not fill RAP bin completely
 - Material may bridge
 - Do not use vibrators to counteract bridging
 - Material tends to pack

Plant Temperatures

- Virgin aggregate temperature dependent upon:
 - RAP moisture content
 - RAP content
 - Desired HMA plant discharge temperature
Batch Plants

- **Plant Variations**
 - RAP feed into weigh hopper
 - RAP feed into pugmill
 - RAP feed into elevator
 - RAP dried in separate dryer
 - RAP heated conductively
 - Practical RAP limit – 30%

RAP Fed into Weigh Hopper

<table>
<thead>
<tr>
<th>Required Aggregate Temperatures</th>
<th>Proctor Mix Ion Exchange Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP</td>
<td>RAP</td>
</tr>
</tbody>
</table>

Assume 10°F loss from dryer to pugmill; 20°F outside air temperature.
RAP Fed into Weigh Hopper
- RAP added to weigh hopper
- Weighed as additional material
- Mixed with virgin materials
- Conductive heat transfer
- Significant steam release

Adding RAP into Weigh Hopper
- Cold, wet RAP into weigh hopper
- Mixed with superheated materials
- RAP heated conductively
- Significant steam release
- 25 to 30% RAP typical
- Exit gas temperature may limit % RAP

RAP Fed into Weigh Hopper
- Balancing steam release difficult
- Tower typically ducted with butterfly damper to primary
- Over-drafting dryer helps balance air flow imbalance
- 25-30% maximum
- 10-15% practical
RAP Fed into Weigh Hopper

- Watch build-up in duct and duct transition areas, especially horizontal ducts
- Monitor lowering of inlet baghouse temperature and H_2O condensation on bags
- These factors can limit RAP percentages possible

RAP Fed into a Bin which Discharges Directly into the Pugmill

- Separate RAP weigh hopper can be used
- Slightly shorter batch cycle time
- Chute, slinger or screw conveyor used to transport RAP from RAP hopper to pugmill
Adding RAP into Pugmill

- Separate weigh hopper
- RAP added to pugmill
- Otherwise same as weigh bucket technique

RAP Fed into Pugmill

- Shortens cycle times, increases production
- Ducting for steam release easier to fit to tower
- Balancing steam release easier – can draft continuous-can draft to dryer as option
- 20-25% easier to achieve (limited by heat transfer not steam management)

RAP Fed into Pugmill

- Watch build-up in duct and duct transition areas
- DO NOT design duct too large or horizontal
- Attempt to design duct for downward flow
- DO NOT over-draft pugmill area during idle times (RAP not being produced)
RAP Fed into Boot of Hot Elevator

- Easier to fit to plant
- Steam management easy
- Trip up elevator short, and no agitation = low RAP %’s
- 10-20% possible
- 5-10% practical
- % impacted by whether using screens or not & size/screens

RAP Fed into Bucket Elevator

- RAP will buildup in hot bins on side wall – requires cleanout
- Watch screen blinding
- Monitor tower for “sweating” – RAP not drying in elevator
- DO NOT push percentages too high (no agitation in drying RAP in bucket elevator)
Drum Plants

- Plant Variations
 - Parallel-flow
 - Emissions limits RAP percent
 - Counter-flow
 - Can reduce gas emissions
 - RAP must be shielded from burner
 - Practical RAP limit – 30 to 50%

RAP Feed to Parallel-Flow Drum Mixer

Adding RAP Parallel Flow

- RAP collar most common
- RAP heated convectively
- Emissions limit RAP to 50 percent
- Variations
 - Isolated mixing area
 - External mixing device
 - Primary dust collector usually added
RAP Collar
- Aggregate heated convectively
- RAP heated convectively
- RAP added at mid-drum
- Emission requirements limit RAP percentage

RAP Feed to Parallel-Flow Dryer and Continuous Mixer

RAP Collar with Mixer
- RAP added at mid-drum
- Virgin binder added in mixer
 - Reduces hydrocarbons in gases
- Requires primary dust collector
 - Fines returned to mixer
RAP Feed to Parallel-Flow Dryer with Isolated Mixing Area

Diagram of RAP feed system to parallel-flow dryer with isolated mixing area.

RAP Collar with Isolated Mixer

- Similar to separate mixer
- Mixer integral to dryer
- Convective RAP heating
- Requires primary dust collector
 - Fines returned to mixer

Parallel-Flow Dryer with RAP Feed to Continuous Mixer

Diagram of parallel-flow dryer with RAP feed system to continuous mixer.
Counter-Flow Dryer with RAP Feed to Continuous Mixer

Counter-Flow Dryer in Mixer
- Counter-flow reduces gas exit temperatures
- Cool, wet aggregates cool gas
- RAP heated conductively in mixer
- Percent RAP affected by mixing space
- Gases from mixer back to dryer

RAP Feed to Counter-Flow Drum Mixer
Counter-Flow Mixer RAP Collar
- Burner extended into drum
- Virgin aggregate heated convectively
- RAP heated conductively
- Virgin binder added in mixing section
- Gasses in dryer

Placement of Recycled HMA
- Potential for lower temperature production
- Less compaction time
- May be easier to compact than conventional HMA

Materials Evaluation
Mix Design

- Level 1
 - Small quantities of RAP (<10 to 15%)
- Level 2
 - Greater than approximately 15% RAP

Virgin Asphalt Considerations (FHWA)

- 0 to 15% no change in binder grade
- 16 to 25% one temperature grade lower
- Greater than 25% use blending charts

Level 1 Mix Design

- Gradation of RAP (asphalt free)
- Gradation of new aggregate
- Combined gradation
- Trial mix design
Mix Design Procedure

- Combine Districts
- Aggregate for Cement
- Heat Aggregate
- Add NAIR at Preliminary Point
- Heat NAIR and Aggregate
- Add single blend in a Neutral Context

Level 2 Mix Design

- Level 1
- Plus binder grading & blending

Blending Charts

- Desire a high temperature grade of 64°C
- Failure temperature of 58.8°C or greater for virgin asphalt binder
- Desire a high temperature grade of 64°C
Importance of Blending Charts

Temperature, °C

What Happens During Mixing with RAP?

Looking at the Asphalt Films
Importance of Material Variability

![Importance of Material Variability graph]

Aggregate Considerations
- Shape
- Surface texture
- Specific gravity
- Friction
- Other properties

QC from RAP (Asphalt Free Gradations)

<table>
<thead>
<tr>
<th>Test #</th>
<th>Reflux Asphalt Content, %</th>
<th>DWA 3/4-in</th>
<th>1/2-in</th>
<th>3/8-in</th>
<th>No. 4</th>
<th>No. 16</th>
<th>No. 50</th>
<th>No. 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.25</td>
<td>100</td>
<td>98</td>
<td>89</td>
<td>66</td>
<td>48</td>
<td>27</td>
<td>12.3</td>
</tr>
<tr>
<td>2</td>
<td>3.52</td>
<td>100</td>
<td>99</td>
<td>91</td>
<td>70</td>
<td>42</td>
<td>23</td>
<td>10.9</td>
</tr>
<tr>
<td>3</td>
<td>3.93</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>74</td>
<td>46</td>
<td>26</td>
<td>11.8</td>
</tr>
<tr>
<td>4</td>
<td>3.83</td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>74</td>
<td>45</td>
<td>22</td>
<td>8.6</td>
</tr>
<tr>
<td>5</td>
<td>3.79</td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>73</td>
<td>45</td>
<td>25</td>
<td>11.7</td>
</tr>
<tr>
<td>6</td>
<td>3.05</td>
<td>100</td>
<td>98</td>
<td>91</td>
<td>66</td>
<td>39</td>
<td>22</td>
<td>11.4</td>
</tr>
<tr>
<td>7</td>
<td>3.31</td>
<td>100</td>
<td>97</td>
<td>90</td>
<td>68</td>
<td>41</td>
<td>23</td>
<td>11.3</td>
</tr>
<tr>
<td>8</td>
<td>3.47</td>
<td>100</td>
<td>98</td>
<td>91</td>
<td>72</td>
<td>44</td>
<td>24</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Average: 3.52 100 98 92 70 44 24 11.1
Standard Deviation: 0.31 0.0 0.9 2.1 3.4 2.9 1.9 1.1
Mix Design Procedure

Mix Considerations
- Volumetrics
- Gradation
- Asphalt binder
- Engineering properties
Plant Verification

<table>
<thead>
<tr>
<th>Date</th>
<th>Sampled Location</th>
<th>Test Purpose</th>
<th>Mix Design Targets</th>
<th>Asphalt Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/9/2007</td>
<td>Hot Sample</td>
<td>Process</td>
<td>100.0</td>
<td>98.7</td>
</tr>
<tr>
<td>4/10/2007</td>
<td>Hot Sample</td>
<td>Process</td>
<td>100.0</td>
<td>97.5</td>
</tr>
<tr>
<td>4/11/2007</td>
<td>Hot Sample</td>
<td>Process</td>
<td>100.0</td>
<td>97.9</td>
</tr>
<tr>
<td>4/12/2007</td>
<td>Hot Sample</td>
<td>Process</td>
<td>100.0</td>
<td>97.4</td>
</tr>
<tr>
<td>4/13/2007</td>
<td>Hot Sample</td>
<td>Process</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4/16/2007</td>
<td>Hot Sample</td>
<td>Process</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4/17/2007</td>
<td>Hot Sample</td>
<td>Process</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4/18/2007</td>
<td>Hot Sample</td>
<td>Process</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Performance

Hot Central Plant Recycling
RAP Field Performance

- Widespread use began in mid-1970's
- High RAP contents allowed by some agencies (>40%)
- Results in higher stabilities, but prone to longitudinal, transverse and reflective cracking
- Agencies applied conventional mix design policies to RAP designs

Published Field Performance of RAP Mixtures

- Washington DOT
 - 24 recycled HMA pavements prior to 1985
 - RAP content: 8 to 79%
 - Performance was equivalent to conventional HMA
 - Predicted service life: 9 to 16 years
- Texas SPS-5 section
 - RAP content: 30%
 - Visual condition survey: 10 years after const.
 - No significant distresses

- Connecticut - Route 4
 - RAP content: 30%
 - Visual condition survey: 6 years after const.
 - No permanent deformation
 - Transverse cracking similar to conventional HMA
 - Longitudinal cracking greater than conventional HMA
- Louisiana DOT
 - 10 sections
 - RAP content: 25 to 20%
 - Visual condition survey: every year for 5 years
 - Comparable performance
Published Field Performance of RAP Mixtures

- Kansas DOT – Reflective Cracking
 - RAP content: 50 to 70%
 - Visual condition survey: 3 years after const.
 - Comparable performance: <1% reflective cracking

- Utah DOT
 - 5 test sections
 - RAP content: 40 to 60%
 - Visual condition survey: 3 years after const.
 - Control section showed greater trans cracking than test sections

- Utah DOT
 - 5 test sections
 - RAP content: 40 to 60%
 - Visual condition survey: 3 years after const.
 - Control section showed greater trans cracking than test sections

- Utah DOT
 - 5 test sections
 - RAP content: 40 to 60%
 - Visual condition survey: 3 years after const.
 - Control section showed greater trans cracking than test sections

Published Field Performance of RAP Mixtures

- Georgia
 - 5 test sections
 - RAP content: 15 to 25%
 - Visual condition survey: 2 years after const.
 - No difference in rutting, raveling and fatigue

- Kansas DOT – US 56
 - RAP content: 50%
 - Visual condition survey: 11 years after const.
 - More trans. and long. cracking than conventional HMA
 - 12 year service life

Unpublished Field Performance of RAP Mixtures

- Arizona DOT
 - Mix designs based on conventional HMA designs
 - Considers recovered asphalt binder properties

- Florida DOT
 - Comparable performance
 - Established specs for sampling and controlling RAP

- Minnesota DOT
 - 1 test section: full depth AC
 - Comparable performance: 15 years
Unpublished Field Performance of RAP Mixtures

- Massachusetts DPW
 - 1 test section
 - RAP content: 35%
 - Visual condition survey: 11 years after const.
 - No trans, long, or reflective cracking
- New Jersey DOT
 - 1 test section
 - RAP content: 50%
 - Visual condition survey: 3 years after const.
 - Control section showed more significant reflective cracking

Performance - Arizona SPS-5

<table>
<thead>
<tr>
<th>Section ID</th>
<th>Start of Section (m)</th>
<th>End of Section (m)</th>
<th>Section Length (m)</th>
<th>RAP Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-0502</td>
<td>1397</td>
<td>1790</td>
<td>193</td>
<td>30</td>
</tr>
<tr>
<td>14-0503</td>
<td>609</td>
<td>622</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>14-0504</td>
<td>235</td>
<td>385</td>
<td>152</td>
<td>0</td>
</tr>
<tr>
<td>14-0505</td>
<td>2024</td>
<td>2280</td>
<td>156</td>
<td>0</td>
</tr>
<tr>
<td>14-0506</td>
<td>1144</td>
<td>1514</td>
<td>370</td>
<td>0</td>
</tr>
<tr>
<td>14-0507</td>
<td>166</td>
<td>182</td>
<td>152</td>
<td>30</td>
</tr>
<tr>
<td>14-0508</td>
<td>1165</td>
<td>137</td>
<td>152</td>
<td>30</td>
</tr>
</tbody>
</table>

2.4-in Conventional HMA

2.7-in Conventional HMA

2.6-in Recycled HMA

4.1-in Recycled HMA

0.7-m Coarse Agg

1.0-m Coarse Agg

Section 507

Section 508
Performance - Arizona SPS-5

PCI

Fatigue Cracking

Transverse/Longitudinal Cracking
Cold in Place Recycle

Cold In-Place Recycling: Advantages
- Significant Structural Improvements
- Most Pavement Distress Treated
- Ride Quality Improved
- Hauling Costs Minimized
- Minimal Air Quality Problems
- Pavement Widening Possible

Partial vs. Full Depth

Old HMA Surface
Old Base Course
Subgrade
Soil
Problem Areas

- Depth of removal
- Degree of pulverization
- Uniformity of mixing
- In-place density
- Curing
- Protection from traffic

Tale of the Tape

<table>
<thead>
<tr>
<th>Material</th>
<th>Energy, Btu/yd²</th>
<th>Cost, $/yd²</th>
<th>Estimated Service Life w/o Routine Maint., Yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA Asphalt Concrete</td>
<td>29,068</td>
<td>0.74</td>
<td>10</td>
</tr>
<tr>
<td>HMA Milling</td>
<td>1,080</td>
<td>0.65</td>
<td>15</td>
</tr>
<tr>
<td>CIPR Cold In-Place Recycling – Full Depth</td>
<td>17,948</td>
<td>0.65</td>
<td>15</td>
</tr>
<tr>
<td>CIPR Cold In-Place Recycling – Partial Depth</td>
<td>12,024</td>
<td>0.64</td>
<td>15</td>
</tr>
</tbody>
</table>

Outline

- Recycling Background
- Hot Central Plant
- Cold In-Place
- Hot In-Place
- Life Cycle Cost Analysis
Hot In-Place Recycling: Advantages

- Surface Cracks Eliminated
- Ruts, Shoves, Bumps Corrected
- Aged Asphalt is Rejuvenated
- Aggregate Gradation and Asphalt Content Can be Modified
- Reduced Traffic Interruption During Construction
- Hauling Cost Minimized

Hot In-Place Recycling: Advantages

- Pavement Geometrics Preserved
- Corrects Surface Distresses Not Caused by Structural Inadequacy
- Can Modify Existing Surface Mix
- Can Improve Surface Frictional Resistance
- Relatively Cheap
- Needs Minimal Traffic Control

Project Considerations

- Uniformity
- Depth of HMA
- Presence of Chip Seals
- Asphalt Content (Bleeding)
- Aggregate Gradation
- Asphalt Properties
- Traffic
- Type of Pavement Distress
Project Considerations

- Modifiers or additives
- Mix design
- Sampling and testing

Equipment Development and Typical Use

- Early concerns
 - In-place air voids
 - Overheating
 - Air quality
 - Safety
 - Depth
 - Production / cost
 - Vegetation

Equipment Development and Typical Use

- Developments in the late 1980s, early 1990s
 - Greater depths
 - Uniformity and control
 - Air quality
 - Production
HIR Processes

- Surface Recycling
- Repaving
- Remixing

Two Stage Remixing

New Mix

Heater, Miller and Mixer

Tale of the Tape

<table>
<thead>
<tr>
<th>Material</th>
<th>Energy, Btu/yd² in</th>
<th>Cost, $/yd²</th>
<th>Estimated Service Life w/o Routine Maint, Yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA Asphalt Concrete</td>
<td>30,000</td>
<td>3.00</td>
<td>20</td>
</tr>
<tr>
<td>HMA Hot-in-Place Recycling - Repaving</td>
<td>30,000</td>
<td>2.50</td>
<td>10</td>
</tr>
<tr>
<td>HIPR Hot-in-Place Recycling - Repaving</td>
<td>30,000</td>
<td>2.50</td>
<td>10</td>
</tr>
<tr>
<td>HIPR Hot-in-Place Recycling - Surface Recycling</td>
<td>40,000</td>
<td>1.50</td>
<td>8</td>
</tr>
</tbody>
</table>
Outline

- Recycling Background
- Hot Central Plant
- Cold In-Place
- Hot In-Place
- Life Cycle Cost Analysis

Life Cycle Cost Analysis

- An economic analysis
- Compare design/rehabilitation alternatives
- Considers all significant costs
- Evaluates the alternatives over the same analysis period

Significance of Life Cycle Cost

- HMA
- PCC – Remove and Replace
- PCC – Rubbilize and Overlay

IC = Initial Cost
CS = Crack Seal
M&F = Mill & Fill
R&R = Remove & Replace
Rub & OL = Rubbilize & Overlay
Salvage

Salvage
Scenario A - Hypothetical Roadway

1,000,000 ESALs

Ex. collector roadways

Scenario A - Construction/Material Alternatives

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Initial Rehabilitation</th>
<th>Rehabilitation</th>
<th>Year(s) of Rehab</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4.5-in Overlay</td>
<td>1.5-in Overlay</td>
<td>11 / 22 / 33</td>
</tr>
<tr>
<td>A2</td>
<td>2-in M&F, 2.5-in Overlay</td>
<td>2-in M&F, 1.5-in Overlay</td>
<td>14 / 28</td>
</tr>
<tr>
<td>A3</td>
<td>2-in CMR - Partial Depth, 4.5-in Overlay</td>
<td>1.5-in Overlay</td>
<td>14 / 28</td>
</tr>
<tr>
<td>A4</td>
<td>2-in CPR - Full Depth, 6-in Overlay</td>
<td>1.5-in Overlay</td>
<td>15 / 23</td>
</tr>
<tr>
<td>A5</td>
<td>2-in HIPR, 2.75-in Overlay</td>
<td>1.5-in Overlay</td>
<td>16 / 26</td>
</tr>
</tbody>
</table>

Scenario A - Construction/Material Alts (per yd²*)

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Energy for Initial Construction, BTU/yd²*</th>
<th>Energy over 40 Years, BTU/yd²*</th>
<th>Asphalt Binder Consumed, lbs/yd²*</th>
<th>First Cost, $/yd²*</th>
<th>NPV 4.0, $/yd²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (Overlay)</td>
<td>114,000</td>
<td>278,369</td>
<td>0.011</td>
<td>14.03</td>
<td>25.11</td>
</tr>
<tr>
<td>A2 (M&F)</td>
<td>119,500</td>
<td>274,289</td>
<td>0.012</td>
<td>13.56</td>
<td>26.02</td>
</tr>
<tr>
<td>A3 (CMR - Partial)</td>
<td>143,500</td>
<td>278,924</td>
<td>0.014</td>
<td>13.25</td>
<td>27.82</td>
</tr>
<tr>
<td>A4 (CPR - Full)</td>
<td>234,000</td>
<td>448,166</td>
<td>0.017</td>
<td>16.15</td>
<td>22.71</td>
</tr>
<tr>
<td>A5 (HIPR)</td>
<td>193,700</td>
<td>289,860</td>
<td>0.012</td>
<td>11.80</td>
<td>19.47</td>
</tr>
</tbody>
</table>
Scenario A – Percent Savings (per yd²*)

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Energy for Initial Construction % Savings, BTU/yd²***</th>
<th>Energy over 40 Years % Savings, BTU/yd²***</th>
<th>Asphalt Binder Consumed % Savings, lbf/yd²*</th>
<th>First Cost % Savings, $/yd²*</th>
<th>NPV 4.5 % Savings, $/yd²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (Overlay)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A2 (HIPR)</td>
<td>13.25</td>
<td>6.16</td>
<td>11.76</td>
<td>56.73</td>
<td>3.62</td>
</tr>
<tr>
<td>A3 (CIPR - Partial)</td>
<td>(13.69)</td>
<td>9.65</td>
<td>17.65</td>
<td>9.38</td>
<td>13.66</td>
</tr>
<tr>
<td>A4 (CIPR – Full)</td>
<td>(96.11)</td>
<td>(22.43)</td>
<td>0.66</td>
<td>(13.39)</td>
<td>9.56</td>
</tr>
<tr>
<td>A5 (HIPR)</td>
<td>17.70</td>
<td>24.32</td>
<td>23.47</td>
<td>13.34</td>
<td>22.44</td>
</tr>
</tbody>
</table>

Benefits Recycling Offers*

<table>
<thead>
<tr>
<th></th>
<th>Initial Construction**</th>
<th>Life Cycle of Pavement**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost savings</td>
<td>3 to 21%</td>
<td>4 to 19%</td>
</tr>
<tr>
<td>Asphalt Binder savings</td>
<td>3 to 40%</td>
<td>10 to 36%</td>
</tr>
<tr>
<td>Energy savings</td>
<td>8 to 21%</td>
<td>10 to 25%</td>
</tr>
</tbody>
</table>

*Percent reduction in comparison to conventional alternative
**Savings dependent upon recycling activity

Questions