

COMPACTION PRINCIPLES

CHUCK DEAHL BOMAG AMERICAS,INC.

QUIZ???

- **1.NAME & JOB FUNCTION**
- 2. WHAT IS COMPACTION??
- 3. WHAT ARE THE GOALS OF COMPACTION??
- 4. WHAT ARE THE FOUR FORCES OF COMPACTION??
- 5. WHAT FACTORS AFFECT COMPACTION OF HMA

COMMUNICATION COMPACTION GOALS DENSITY SMOOTHNESS BALANCED PRODUCTION

COMPACTION

- Is a mechanical process:
- compresses HMA into a smaller denser volume after placement by applying one or more of the 4 forces of compaction
- Increases mixture stability:
- forces asphalt coated aggregate particles closer together
- achieves particle to particle contact

IMPORTANCE OF COMPACTION IMPROVE MECHANICAL

- STABILITY
- ■IMPROVE RESISTANCE TO PERMANENT DEFORMATION
- REDUCE MOISTURE PENETRATION
- IMPROVE FATIGUE RESISTANCE

4 FORCES OF COMPACTION

PRESSURE: A DOWNWARD FORCE IMPACT: A HAMMER BLOW VIBRATION: A RAPID SERIES OF IMPACT BLOWS MANIPULATION: KNEADING IN A CONFINED MANNER

FACTORS AFFECTING COMPACTION

MIX DESIGN

- AGGREGATE AND ASPHALT CEMENT
- LAB DENSITY & FIELD DENSITY
- CLIMATIC CONDITIONS
- PAVER TYPE AND PAVING METHOD
- TEMPERATURE: MAT, BASE AMBIENT, DIRECTION OF SUN; WIND

IN THE BEGINNING

HOW DO WE BALANCE PRODUCTION

DETERMINE PAVER SPEED ■NUMBER AND TYPE OF ROLLERS

■NUMBER OF PASSES WITH **ROLLERS TO COVER THE MAT** AND OBTAIN DENSITY

PAVER PRODUCTION FORMULA

- S= Paver Speed (ft./min.)
- W= Lane Width (ft.)
- L= Lift Thickness (ft.)
- D= Density (lbs./ft.3)
- Tons/Hour= S x 60 min. in1 hr.x 1 ton in 2000 lbs.x W x L x D

FORMULA EXAMPLE

- Paver Speed= 40 ft./min.
- Lane Width= 12 ft.
- Density= 135 lbs./ft.3
- Lift Thickness= .166 ft. = 2 inches
- Tons/Hour = 40 x 60 x 12 x .166 x135 divided by 2000= 322 Tons/ Hour

BALANCING ROLLERS WITH PAVER SPEED

- Breakdown Roller: 84" Double Drum Vibratory 4000 vpm Roller maintains a min. of 10 impacts per foot (IPF) = 400 fpm 400 fpm has to be reduced by # of passes to cover paving width=2; # of passes to obtain density=2; 2x2=4plus 1 return pass total passes
- 400 fpm divided by 5 passes = 80 fpm
- 80% efficiency factor x 80 fpm= 64 fpm
 This 84" double drum vibratory roller will match 40fpm paving speed

Major Factors Affecting Rolling Time					
allows MORE time	allows LESS time				
тніск	THIN				
нісн	LOW				
нісн	LOW				
	ng Rolling allows MORE time THICK HIGH HIGH				

PAVEMENT CONSTRUCTION ISSUES

- ■1. NO COMPACTION IN EMBANKMENTS AND BASES
- 2. SEGREGATION
- 3. POOR COMPACTION TECHNIQUE

Causes of Segregation

- Physical segregation of coarse and fine materials
- Mat temperature differentials immediately behind the paver
- Localized cooling of the mix in haul trucks and formation of crust

Key Points in Prevention of Segregation:

- Prevent Dribbling of Materials
 Keep Material Contained
- Move Material in a Smooth Uniform Uninterrupted Manner.

Segregation Prior to Placement: Material Production HMA Plant

Cause:

- Material Segregated in Truck
 Running Conveyor Deck Dry
 Cycling Hopper Wings Too Soon

Nonstop Paving Use of loading or transfer machine

Goals: To stabilize a paving operation so the paver can maintain a constant unchanging paving speed, eliminating the stops and starts traditionally associated with trucks dumping directly into the paver.

3 PHASES OF ROLLING BREAKDOWN INTERMEDIATE FINISH

Impact Spacing						
Frequency	2 MPH	3 MPH	4 MPH	5 MPH		
2000 vpm	1.06	1.58	2.14	2.64		
2200 vpm	0.96	1.44	1.92	2.40		
2400 vpm	0.88	1.32	1.76	2.20		
2600 vpm	0.81	1.22	1.63	2.03		
2800 vpm	0.75	1.13	1.51	1.89		
3000 vpm	0.70	1.06	1.41	1.76		
3200 vpm	0.66	0.99	1.33	1.65		
3400 vpm	0.62	0.93	1.24	1.55		
3600 vpm	0.59	0.88	1.17	1.47		
3800 vpm	0.56	0.83	1.11	1.39		

TRAVEL SPEED OF ROLLERS

DOUBLE DRUM VIBRATORY 2-4 MPH PNEUMATIC ROLLER 2-3 MPH STATIC STEEL WHEEL ROLLER 3-5 MPH

SPEED CAN KILL

Drum Impacts per foot (10/ft minimum)					
Frequency	2 MPH	3 MPH	4 MPH	5 MPH	
2000 vpm	11.36	7.58	5.68	4.55	
2200 vpm	12.50	8.33	6.25	5.00	
2400 vpm	13.64	9.09	6.82	5.45	
2600 vpm	14.77	9.84	7.39	5.91	
2800 vpm	15.91	10.61	7.95	6.36	
3000 vpm	17.05	11.36	8.52	6.82	
3200 vpm	18.18	12.12	9.09	7.27	
3400 vpm	19.32	12.88	9.66	7.72	
3600 vpm	20.45	13.64	10.22	8.18	
3800 vpm	21.59	14.39	10.80	8.63	

Lift Thickness

- Recommended 3:1 to 6:1 Thickness:NMAS
- Thin lifts cool faster – less time available for compaction

BUILDING QUALITY HOT MIX ASPHALT JOINTS

CHUCK DEAHL BOMAG AMERICAS, INC.

Steps in Making Good Longitudinal Joints

- 1- Control Segregation at the Outside Edges of the Mat
- 2- Steer a Straight Line
- 3- Compact Unconfined Edge
- 4- Maintain Correct Overlap
 5- Place the Proper Depth for Roll Down
 6- Do Not Lute the Joint
- 7- Compact the Joint for Density

Control Segregation at the Outside Edges of the Mat

Minimize Segregation at the Outside Edges of the Mat

Properly Adjust the Material Sensors

Use Correct Length of Auger Tunnels

BASIC PRINCIPLES OF GOOD COMPACTION

KNOW THE VARIABLES KNOW THE SPECS KNOW THE LAYOUT ESTABLISH A PATTERN TO ACHIEVE: COVERAGE, DENSITY, SMOOTHNESS, AND BALANCED PRODUCTION KNOW THE BASIC OPERATION OF EACH TYPE OF ROLLER

INTELLIGENT COMPACTION

- A SYSTEM FOR MEASURING THE STIFFNESS OF HMA ON THE ROLLER
- A RECORDING OF THAT STIFFNESS MEASURMENT
- PROOF OF THE STIFFNESS OF THE HMA AS RELATED TO DENSITY
- PROVIDING INFORMATION FOR THE ROLLER TO MAKE DECISIONS

8.8.2 Test Strip Construction

- Simulating Actual Conditions
- Establishing Roller Pattern
- Effective Roller Speed

Asphalt Manager

Benefits for Contractors:

- Compaction Uniform and predictable results whilst rolling Avoids under / overcompaction Better eveness and roughness Eliminates drum bouncing

- Economical and quality aspects More efficient roller utilisation with fewer passes Reduced shock loads in sensitive environment e.g. buildings, bridges Area coverage method

\$ VALUE

- I/C MEASURES THE STIFFNESS OF A LIFT OF HMA
- DENSOMETERS MEASURE DENSITY OF HMA
- THIS GIVES US TWO MEASUREMENTS OF THE STABILITY OF THE HMA
- WHY CUT SO MANY CORES THAT COST \$800.00-\$1000.00 A CORE

