

Test Report No. 608331-01-1A-2-3 Test Report Date: April 2019

MASH TL-4 EVALUATION OF 2019 MASH 2-TUBE BRIDGE RAIL.

by

William F. Williams, P.E. Associate Research Engineer

Wanda L. Menges Research Specialist

and

Bill L. Griffith Research Specialist

Contract No.: 1602767

Test No.: 608331-01-1A / 2 / 3

Test Date: 2018-12-10 / 12-12 / 12-14

Sponsored by

State of Alaska Department of Transportation and Public Facilities and North Dakota Department of Transportation

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address: Roadside Safety & Physical Security Texas A&M University System 3135 TAMU College Station, TX 77843-3135 Located at:
Texas A&M University System RELLIS Campus
Building 7091
3100 State Highway 47
Bryan, TX 77807

ISO 17025 Laboratory
Testing Certificate # 2821.01

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data, and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the State of Alaska Department of Transportation and Public Facilities, North Dakota Department of Transportation, The Texas A&M University System, or Texas A&M Transportation Institute. This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article being tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The Proving Ground Laboratory within the Texas A&M Transportation Institute's Roadside Safety and Physical Security Division ("TTI Lab" or "TTI LAB") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab shall promptly disclose such error to State of Alaska Department of Transportation and Public Facilities, and both parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract shall not constitute a breach of the testing contract.

THE TTI LAB SHALL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES, NORTH DAKOTA DEPARTMENT OF TRANSPORTATION, OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle MASH TL-4 EVALUATION OF 20	5. Report Date April 2019	
RAIL		6. Performing Organization Code
7. Author(s) William F. Williams, Wanda L. Me	nges, and Bill L. Griffith	8. Performing Organization Report No. Test Report No. 608331-01-1A-2-3
9. Performing Organization Name and Address Texas A&M Transportation Institute	e Proving Ground	10. Work Unit No. (TRAIS)
3135 TAMU College Station, Texas 77843-3135	11. Contract or Grant No. 1602767	
12. Sponsoring Agency Name and Address State of Alaska Department of Transportation and Public Facilitie	North Dakota Department of Transportation	13. Type of Report and Period Covered Technical Report: February 2016 – March 2019
Bridge Section 3132 Channel Drive – Room 100 Juneau, AK 99811-2500	14. Sponsoring Agency Code	
15. Supplementary Notes Project Title: MASH Testing – Brid Name of Contacting Representative	dge Rail and Thrie-Beam Transition : Elmer E. Marx – Alaska DOT&PF	

16. Abstract

The purpose of the tests reported herein was to assess the performance of a new, taller Alaska Multi-State 2-Tube Bridge Rail (re-designated as 2019 MASH 2-Tube Bridge Rail) according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO), *Manual for Assessing Safety Hardware (MASH)*, Second Edition 2016. The crash tests performed were in accordance with *MASH* Test Level 4 (TL-4), which involves three tests on the 2019 MASH 2-Tube Bridge Rail.

This report provides details of the 2019 MASH 2-Tube Bridge Rail, detailed documentation of the crash tests and results, and an assessment of the performance of the 2019 MASH 2-Tube Bridge Rail for *MASH* TL-4 evaluation criteria.

The 2019 MASH 2-Tube Bridge Rail performed acceptably for MASH TL-4 longitudinal barriers.

17. Key Words		18. Distribution Statement		
Bridge rail, longitudinal barrier, crash testing,		Copyrighted. Not to be copied or reprinted without		
MASH, roadside safety.		consent from the State of Alaska Department of		
		Transportation an	d Public Facilities	and North
		Dakota Departme	ent of Transportation	on.
19. Security Classif.(of this report) 20. Security Classif.(of th		is page)	21. No. of Pages	22. Price
Unclassified Unclassified			128	

SI* (MODERN METRIC) CONVERSION FACTORS					
APPROXIMATE CONVERSTIONS TO SI UNITS					
Symbol	When You Know	Multiply By	To Find	Symbol	
_		LENGTH			
in	inches	25.4	millimeters	mm	
ft	feet	0.305	meters	m	
yd	yards	0.914	meters	m	
mi	miles	1.61	kilometers	km	
. 2		AREA		2	
in ² ft ²	square inches	645.2 0.093	square millimeters square meters	mm² m²	
yd ²	square feet square yards	0.836	square meters	m ²	
ac	acres	0.405	hectares	ha	
mi ²	square miles	2.59	square kilometers	km ²	
		VOLUME			
fl oz	fluid ounces	29.57	milliliters	mL	
gal	gallons	3.785	liters	L	
ft ³	cubic feet	0.028	cubic meters	m^3	
yd ³	cubic yards	0.765	cubic meters	m ³	
	NOTE: V	olumes greater than 1000L	shall be shown in m ³		
		MASS			
OZ	ounces	28.35	grams	g	
lb T	pounds	0.454 0.907	kilograms	kg	
I	short tons (2000 lb)	TEMPERATURE (exac	megagrams (or metric ton")	Mg (or "t")	
°F	Fahrenheit	5(F-32)/9	Celsius	°C	
'	i amemien	or (F-32)/1.8	Ceisius	C	
	F	FORCE and PRESSURE	or STRESS		
llh f					
i iOi	poundforce	4.45	newtons	N	
lbf lbf/in²	poundforce per square	4.45 inch 6.89	newtons kilopascals	N kPa	
lbf/in ²	poundforce per square	inch 6.89	kilopascals		
	poundforce per square	inch 6.89 XIMATE CONVERSTION	kilopascals		
lbf/in ²	poundforce per square APPRO	inch 6.89	kilopascals NS FROM SI UNITS	kPa	
lbf/in ²	poundforce per square APPRO When You Know millimeters	inch 6.89 XIMATE CONVERSTION Multiply By	kilopascals NS FROM SI UNITS	kPa	
lbf/in ² Symbol	poundforce per square APPRO When You Know	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28	kilopascals NS FROM SI UNITS To Find	kPa Symbol	
Symbol mm	poundforce per square APPRO When You Know millimeters meters meters meters	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09	kilopascals NS FROM SI UNITS To Find inches feet yards	kPa Symbol in ft yd	
Symbol mm m	poundforce per square APPRO When You Know millimeters meters	Name	kilopascals NS FROM SI UNITS To Find inches feet	kPa Symbol in ft	
Symbol mm m m km	poundforce per square APPRO When You Know millimeters meters meters kilometers	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	kilopascals NS FROM SI UNITS To Find inches feet yards miles	kPa Symbol in ft yd mi	
Symbol mm m km km	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches	Symbol in ft yd mi in²	
Symbol mm m km mm² m²	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet	kPa Symbol in ft yd mi in² ft²	
Symbol mm m km mm² m² m² m²	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters square meters	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards	kPa Symbol in ft yd mi in² ft² yd²	
Symbol mm m km mm² m² m² ha	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres	kPa Symbol in ft yd mi in² ft² yd² ac	
Symbol mm m km mm² m² m² m²	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters square meters	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards	kPa Symbol in ft yd mi in² ft² yd²	
Ibf/in ² Symbol mm m km mm² m² m² ha km²	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles	kPa Symbol in ft yd mi in² ft² yd² ac mi²	
Symbol mm m km mm² m² m² ha	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz	
Ibf/in ² Symbol mm m km mm ² m ² m ² ha km ² mL	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³	
Ibf/in ² Symbol mm m km mm² m² ha km² mL L	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal	
Ibf/in ² Symbol mm m km mm² m² ha km² mL L m³	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³	
Ibf/in ² Symbol mm m km mm² m² ha km² mL L m³ m³	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz	
Ibf/in ² Symbol mm m km mm² m² ha km² mL L m³ m³ m³	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	inch 6.89 XIMATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb	
Ibf/in ² Symbol mm m km mm² m² ha km² mL L m³ m³	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 e. ton") 1.103 E. Conversion 1.103 E. Conversion 1.103 E. Conversion 1.103 E. Conversion E. Conversion E. Conversion 1.103 E. Conversion 1.1	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz	
Ibf/in ² Symbol mm m km mm² m² m² ha km² mL L m³ m³ m³ g kg Mg (or "t")	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exaction)	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees)	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T	
Ibf/in ² Symbol mm m km mm² m² ha km² mL L m³ m³ m³	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exact 1.8C+32	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb	
Ibf/in² Symbol mm m m km mm² m² m² ha km² mL L m³ m³ g kg Mg (or "t") °C	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 2.202 2.207 1.103 TEMPERATURE (exact 1.8C+32 FORCE and PRESSURE Converse Converse	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit or STRESS	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T	
Ibf/in ² Symbol mm m km mm² m² m² ha km² mL L m³ m³ m³ g kg Mg (or "t")	poundforce per square APPRO When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exact 1.8C+32	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit	kPa Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T	

^{*}SI is the symbol for the International System of Units

REPORT AUTHORIZATION

REPORT REVIEWED BY:

─DocuSigned by:

Glenn Schroeder

Glenn Schroeder, Research Specialist Drafting & Reporting

-DocuSigned by:

Gary Gerke

Gary Gerke, Research Specialist Construction

-DocuSigned by:

Scott Dobrovolny

Scott Dobrovolny, Research Specialist Mechanical Instrumentation

-DocuSigned by:

Ken Reeves

Ken Reeves, Research Specialist Electronics Instrumentation

-DocuSigned by:

Pichard Badillo

Richard Badillo, Research Specialist Photographic Instrumentation

-DocuSigned by:

Wanda L. Menza-

Wanda L. Menges, Research Specialist Reporting & Deputy QM

DocuSigned by:

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

-DocuSigned by:

Matthew Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

-DocuSigned by:

William Williams

William F. Williams, P.E. Associate Research Engineer

TABLE OF CONTENTS

	Pa	ge
Disclain	ner	. ii
List of F	Figures	ix
List of T	Tables	хi
Chapter	· 1. Introduction	. 1
1.1	Problem Statement	. 1
1.2	Background	. 1
1.3	Objective	. 1
Chapter	· 2. System Details	. 3
2.1.	Test Article and Installation Details	. 3
2.2.	Material Specifications	
Chapter	3. Test Requirements and Evaluation Criteria	. 7
3.1.		
3.2.	Evaluation Criteria	. 7
Chapter	· 4. Test Conditions	. 9
4.1.	Test Facility	. 9
4.2	Vehicle Tow and Guidance System	. 9
4.3	Data Acquisition Systems	
4	4.3.1 Vehicle Instrumentation and Data Processing	. 9
4	A.3.2 Anthropomorphic Dummy Instrumentation	
4	Photographic Instrumentation Data Processing	
Chapter		
5.1	Test Designation and Actual Impact Conditions	
5.2	Weather Conditions	
5.3	Test Vehicle	13
5.4	Test Description	14
5.5	Damage to Test Installation	14
5.6	Vehicle Damage	16
5.7	Occupant Risk Factors	17
Chapter	c 6. MASH Test 4-11 (Crash Test No. 608331-01-2)	21
6.1	Test Designation and Actual Impact Conditions	21
6.2	Weather Conditions	21
6.3	Test Vehicle	21
6.4	Test Description	22
6.5	Damage to Test Installation	23
6.6	Vehicle Damage	24
6.7	Occupant Risk Factors	25
Chapter	7. MASH Test 4-10 (Crash Test No. 608331-01-3)	29
$\bar{7.1}$	Test Designation and Actual Impact Conditions	
7.2	Weather Conditions	29
7.3	Test Vehicle	29
7.4	Test Description	
7.5	Damage to Test Installation	30

TABLE OF CONTENTS (CONTINUED)

		Page
7.6	Vehicle Damage	32
7.7	Occupant Risk Factors	33
Chapter	· 8. Summary and Conclusions	37
8.1	Assessment of Test Results	
8.2	Conclusions	
Referen	ces	43
Append	ix A. Details of the 2019 MASH 2-Tube Bridge Rail	45
	ix B. Supporting Certification Documents	
	lx C. MASH Test 4-12 (Crash Test No. 608331-01-1A)	
C1	Vehicle Properties and Information	
C2	Sequential Photographs	
C3	Vehicle Angular Displacements	
C4	Vehicle Accelerations	
Appenio	lx D. MASH Test 4-11 (Crash Test No. 608331-01-2)	89
D1	Vehicle Properties and Information	
D2	Sequential Photographs	
D3	Vehicle Angular Displacements	96
D4	Vehicle Accelerations	
Appenio	lx E. MASH Test 4-10 (Crash Test No. 608331-01-3)	103
E1	Vehicle Properties and Information	103
E2	Sequential Photographs	106
E3	Vehicle Angular Displacements	
E4	Vehicle Accelerations	

LIST OF FIGURES

		Page
Figure 2.1.	Details of the 2019 MASH 2-Tube Bridge Rail.	4
Figure 2.2.	2019 MASH 2-Tube Bridge Rail prior to Testing.	5
Figure 5.1.	2019 MASH 2-Tube Bridge Rail/Test Vehicle Geometrics for Test No.	
	608331-01-1A	
Figure 5.2.	Test Vehicle before Test No. 608331-01-1A	14
Figure 5.3.	Overall Damage to Alaska Bridge Rail after Test No. 608331-01-1A	15
Figure 5.4.	Impact Area after Test No. 608331-01-1A.	16
Figure 5.5.	Test Vehicle after Test No. 608331-01-1A	
Figure 5.6.	Interior of Test Vehicle after Test No. 608331-01-1A.	17
Figure 5.7.	Summary of Results for MASH Test 4-12 on 2019 MASH 2-Tube Bridge	
	Rail	19
Figure 6.1.	2019 MASH 2-Tube Bridge Rail/Test Vehicle Geometrics for Test No. 608331-01-2.	21
Figure 6.2.	Test Vehicle before Test No. 608331-01-2.	22
Figure 6.3.	2019 MASH 2-Tube Bridge Rail after Test No. 608331-01-2	23
Figure 6.4.	Damage at Post 9 after Test No. 608331-01-2	
Figure 6.5.	Test Vehicle after Test No. 608331-01-2.	
Figure 6.6.	Interior of Test Vehicle for Test No. 608331-01-2	
Figure 6.7.	Summary of Results for MASH Test 4-11 on 2019 MASH 2-Tube Bridge	
	Rail	27
Figure 7.1.	2019 MASH 2-Tube Bridge Rail/Test Vehicle Geometrics for Test No.	
J	608331-01-3	29
Figure 7.2.	Test Vehicle before Test No. 608331-01-3	
Figure 7.3.	2019 MASH 2-Tube Bridge Rail after Test No. 608331-01-3	31
Figure 7.4.	Damage at Post 13 after Test No. 608331-01-3	
Figure 7.5.	Test Vehicle after Test No. 608331-01-3.	33
Figure 7.6.	Interior of Test Vehicle for Test No. 608331-01-3	33
Figure 7.7.	Summary of Results for MASH Test 4-10 on 2019 MASH 2-Tube Bridge	
	Rail	35
Figure C.1.	Sequential Photographs for Test No. 608331-01-1A (Overhead and	
	Frontal Views).	
Figure C.2.	Sequential Photographs for Test No. 608331-01-1A (Rear View)	
Figure C.3.	Vehicle Angular Displacements for Test No. 608331-01-1A.	82
Figure C.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-1A	
	(Accelerometer Located at Center of Gravity)	83
Figure C.5.	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-1A	
	(Accelerometer Located at Center of Gravity).	84
Figure C.6.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-1A	
	(Accelerometer Located at Center of Gravity).	85
Figure C.7.	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-1A	
	(Accelerometer Located Rear of Center of Gravity).	86
Figure C.8.	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-1A	
	(Accelerometer Located Rear of Center of Gravity).	87

LIST OF FIGURES (CONTINUED)

		Page
Figure C.9.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-1A	
	(Accelerometer Located Rear of Center of Gravity).	88
Figure D.1.	Sequential Photographs for Test No. 608331-01-2 (Overhead and Frontal	
	Views)	93
Figure D.2.	Sequential Photographs for Test No. 608331-01-2 (Rear View)	95
Figure D.3.	Vehicle Angular Displacements for Test No. 608331-01-2.	96
Figure D.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-2	
C	(Accelerometer Located at Center of Gravity).	97
Figure D.5.	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-2	
	(Accelerometer Located at Center of Gravity).	98
Figure D.6.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-2	
C	(Accelerometer Located at Center of Gravity).	99
Figure D.7.	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-2	
	(Accelerometer Located Rear of Center of Gravity).	100
Figure D.8.	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-2	
C	(Accelerometer Located Rear of Center of Gravity).	101
Figure D.9.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-2	
	(Accelerometer Located Rear of Center of Gravity).	102
Figure E.1.	Sequential Photographs for Test No. 608331-01-3 (Overhead and Frontal	
J	Views).	106
Figure E.2.	Sequential Photographs for Test No. 608331-01-3 (Rear View)	108
Figure E.3.	Vehicle Angular Displacements for Test No. 608331-01-3.	
Figure E.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-3	
J	(Accelerometer Located at Center of Gravity).	110
Figure E.5.	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-3	
J	(Accelerometer Located at Center of Gravity).	111
Figure E.6.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-3	
C	(Accelerometer Located at Center of Gravity).	112
Figure E.7.	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-3	
J	(Accelerometer Located Rear of Center of Gravity).	113
Figure E.8.	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-3	
Č	(Accelerometer Located Rear of Center of Gravity).	114
Figure E.9.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-3	
_	(Accelerometer Located Rear of Center of Gravity).	115

LIST OF TABLES

		Page
Table 3.1.	Test Conditions and Evaluation Criteria Specified for MASH TL-3	
	Longitudinal Barriers.	7
Table 3.2.	Evaluation Criteria Required for MASH TL-4 for Longitudinal Barriers	8
Table 5.1.	Events during Test No. 608331-01-1A.	14
Table 5.2.	Occupant Risk Factors for Test No. 608331-01-1A.	18
Table 6.1.	Events during Test No. 608331-01-2.	22
Table 6.2.	Occupant Risk Factors for Test No. 608331-01-2.	26
Table 7.1.	Events during Test No. 608331-01-3.	
Table 7.2.	Occupant Risk Factors for Test No. 608331-01-3.	34
Table 8.1.	Performance Evaluation Summary for MASH Test 4-12 on 2019 MASH 2-	
	Tube Bridge Rail	38
Table 8.2.	Performance Evaluation Summary for MASH Test 4-11 on 2019 MASH 2-	
	Tube Bridge Rail	39
Table 8.3.	Performance Evaluation Summary for MASH Test 4-10 on 2019 MASH 2-	
	Tube Bridge Rail	40
Table 8.4.	Assessment Summary for MASH TL-4 Tests on 2019 MASH 2-Tube	
	Bridge Rail.	41
Table C.1.	Vehicle Properties for Test No. 608331-01-1A	
Table D.1.	Vehicle Properties for Test No. 608331-01-2	89
Table D.2.	Measurements of Vehicle Vertical CG for Test No. 608331-01-2	90
Table D.3.	Exterior Crush Measurements for Test No. 608331-01-2.	91
Table D.4.	Occupant Compartment Measurements for Test No. 608331-01-2	92
Table E.1.	Vehicle Properties for Test No. 608331-01-3	
Table E.2.	Exterior Crush Measurements for Test No. 608331-01-3.	104
Table E.3.	Occupant Compartment Measurements for Test No. 608331-01-3	105

This page intentionally left blank.

Chapter 1. INTRODUCTION

1.1 PROBLEM STATEMENT

The Federal Highway Administration/American Association of State Highway and Transportation Officials (AASHTO) joint implementation date for all bridge railing designs to meet the requirements of AASHTO Manual for Assessing Safety Hardware (MASH) is December 31, 2019 (1,2). There is a need to re-evaluate commonly used bridge rails with respect to the MASH requirements. The purpose of this project is to evaluate the Alaska 2-Tube Bridge Rail and the Alaska Thrie-Beam Transition with respect to MASH requirements. This bridge rail has been successfully crash tested to National Cooperative Highway Research Program (NCHRP) Report 350 Test Level 4 (TL-4) specifications (3-6). A thrie-beam transition and a W-beam transition were successfully tested to NCHRP Report 350 specifications for TL-4 and TL-3, respectively (7-10). Alaska DOT and several other northwestern states currently use the Alaska 2-Tube Bridge Rail and the two transitions that are used in conjunction with the Alaska 2-Tube Bridge Rail design. Some modifications and improvements (e.g., taller) were made to the existing Alaska 2-Tube Bridge Rail to enable this design to meet the requirements for MASH TL-4. The purpose of this project was to make design improvements as necessary for the bridge rail and thrie-beam transition and evaluate the performance of these designs using fullscale crash testing with respect to MASH guidelines for Test Level 4.

1.2 BACKGROUND

In May 1998, Texas A&M Transportation Institute contracted with Alaska Department of Transportation to perform engineering analyses, design, and full-scale testing on the following:

- 1.) Alaska Multi-State (2-Tube) Bridge Rail.
- 2.) Alaska Multi-State Bridge Rail Thrie-Beam Transition.
- 3.) Alaska Multi-State W-Beam Transition.

Under that project (TTI Project No. 404311), TTI researchers performed engineering analyses, developed engineering details, and performed full-scale crash testing on the Alaska Multi-State (2-Tube) Bridge Rail. The bridge rail successfully met the performance requirements of *NCHRP Report 350* Test Level 4 (TL-4). As part of this current project, TTI researchers also performed analyses, design, and full-scale testing for a new Alaska Multi-State Bridge Rail Thrie-Beam Transition. This new thrie beam transition design will be tested with respect to *MASH* TL-3 and is planned for later.

1.3 OBJECTIVE

For this project, TTI researchers evaluated the strength and performance of a new, taller Alaska Multi-State 2-Tube Bridge Rail, herein after re-designated as the 2019 MASH 2-Tube Bridge Rail, with respect to *MASH*, Second Edition 2016, specifications. TTI researchers performed engineering analyses and developed engineering details for this design to meet the performance requirements of *MASH* TL-4. TTI Proving Ground performed full-scale crash testing on the final 2019 MASH 2-Tube Bridge Rail with respect to *MASH* TL-4.

The purpose of the tests reported herein was to assess the performance of the 2019 MASH 2-Tube Bridge Rail according to the safety-performance evaluation guidelines included in AASHTO *MASH*. The crash tests performed were in accordance with *MASH* TL-4, which involves three full-scale crash tests on the 2019 MASH 2-Tube Bridge Rail.

This report provides details of the 2019 MASH 2-Tube Bridge Rail, detailed documentation of the crash tests and results, and an assessment of the performance of the 2019 MASH 2-Tube Bridge Rail for *MASH* TL-4 evaluation criteria.

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

The concrete portion of the 2019 MASH 2-Tube Bridge Rail test installation was 154 ft long, and consisted of a reinforced cantilevered deck and curb, with two 2-inch wide joints extending through both the curb and the deck. The curb was 10 inches tall, with a 4-inch thick lift of grout, yielding a 6-inch tall traffic side face. A 2-sack grout mix was used to simulate asphalt which is typically used on the bridge applications. The curb was 18 inches wide at the base, and 17 inches wide at the top, with the traffic side face sloping 1 inch toward the field side. Anchor bolts were cast in the deck and extended through the curb.

Sixteen fabricated steel posts were longitudinally spaced on 10 feet centers, beginning at 24 inches from each end of the concrete curb. Two steel rectangular HSS rail elements spanned the posts, and extended past them at each end of the installation. The top of the rails were located 24 inches and 38 inches above grade (i.e. the grout on the concrete deck).

Figure 2.1 presents overall information on the 2019 MASH 2-Tube Bridge Rail, and Figure 2.2 provides photographs of the installation. Appendix A provides further details of the 2019 MASH 2-Tube Bridge Rail.

2.2. MATERIAL SPECIFICATIONS

The specified minimum unconfined compressive strength of the concrete for the curb was 4000 psi and for the deck was 5000 psi. On December 10, 2018, the average compressive strength of the concrete used in the curb was 5060 psi (at 42 days), and that in the deck was 5670 psi (at 44 days).

Appendix B provides material certification documents for the materials used to install/construct the 2019 MASH 2-Tube Bridge Rail.

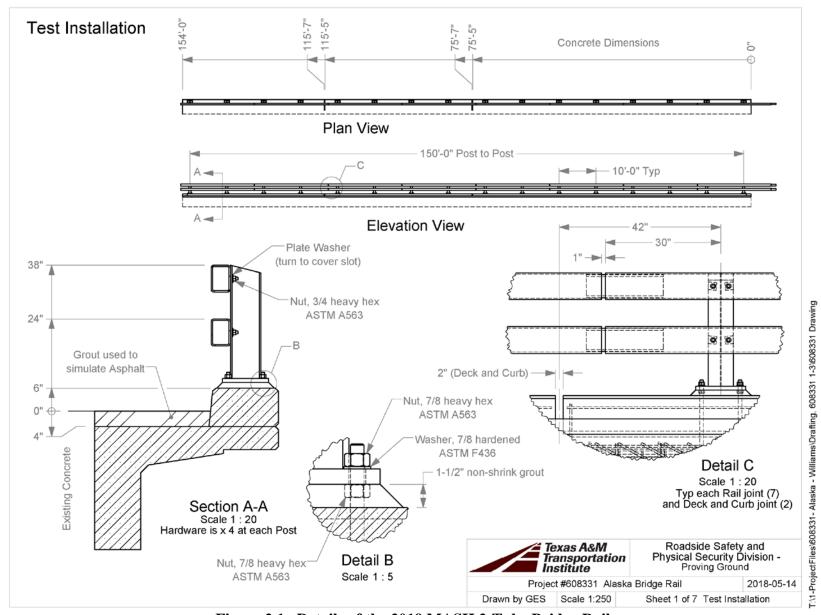


Figure 2.1. Details of the 2019 MASH 2-Tube Bridge Rail.

Figure 2.2. 2019 MASH 2-Tube Bridge Rail prior to Testing.

This page intentionally left blank.

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED / MATRIX

According to *MASH*, three tests are recommended to evaluate longitudinal barriers to TL-4, details of which are shown in Table 3.1

Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-4 Longitudinal Barriers.

Test Article	Test	Test Condition			Evaluation Criteria
	Designation Vehicle		Speed	Angle	Criteria
	4-10	1100C	62 mi/h	25°	A, D, F, H, I
Longitudinal Barrier	4-11	2270P	62 mi/h	25°	A, D, F, H, I
201101	4-12	10000S	56 mi/h	15°	A, D, G

MASH Tests 4-10 and 4-11 evaluate a barrier's ability to successfully contain and redirect passenger vehicles and evaluate occupant risk. *MASH* Test 4-12 evaluates the structural adequacy of the bridge rail. All three tests were performed on the bridge rail.

The target critical impact point (CIP) for each test was determined in accordance with the guidance provided in *MASH Section 2.3.2* and *MASH Table 2-7*. For *MASH* Test 4-10, the target CIP was 3.6 ft upstream of the centerline of post 13. The target CIP for *MASH* Test 4-11 was 4.3 ft upstream of the centerline of post 9. For *MASH* 4-12, the target CIP was 5.0 ft upstream of the centerline of post 5.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from *MASH Table 2-2* and *MASH Table 5-1* were used to evaluate the crash tests reported herein. The test conditions and evaluation criteria required for *MASH* TL-4 tests are listed in Table 3.1, and the substance of the evaluation criteria in Table 3.2. An evaluation of the crash test results is presented in detail under the section Assessment of Test Results.

Table 3.2. Evaluation Criteria Required for MASH TL-4 for Longitudinal Barriers.

Evaluation Factors		Test Designation	
Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.		4-10, 4-11, 4-12
	sh co or De sh	etached elements, fragments, or other debris from the test article would not penetrate or show potential for penetrating the occupant empartment, or present undue hazard to other traffic, pedestrians, personnel in a work zone. The eformations of, or intrusions into, the occupant compartment would not exceed limits set forth in Section 5.2.2 and Appendix E MASH.	4-10, 4-11, 4-12
Occupant Risk		he vehicle should remain upright during and after collision. The aximum roll and pitch angles are not to exceed 75 degrees.	4-10, 4-11
		is preferable, although not essential, that the vehicle remain oright during and after the collision.	4-12
	lin	ccupant impact velocities (OIV) should satisfy the following mits: Preferred value of 30 ft/s, or maximum allowable value of 0 ft/s.	4-10, 4-11
		he occupant ridedown accelerations should satisfy the following: referred value of 15.0 g, or maximum allowable value of 20.49 g.	4-10, 4-11

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash test reported herein were performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, and according to the *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on the Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 miles northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and evaluation of roadside safety hardware and perimeter protective devices. The site selected for construction and testing of the 2019 MASH 2-Tube Bridge Rail was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE SYSTEM

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site (no sooner than 2 s after impact), after which the brakes were activated, if needed, to bring the test vehicle to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware

and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and all instrumentation used in the vehicle conforms to all specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO® 2901, precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive a calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data is measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with SAE Class 180 low-pass filters, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

4.3.2 Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional. However, it is recommended a dummy be used when testing "any longitudinal barrier with a height greater than

or equal to 33 inches." Use of the dummy in the 2270P vehicle is recommended for tall rails to evaluate the "potential for an occupant to extend out of the vehicle and come into direct contact with the test article." Although this information is reported, it is not part of the impact performance evaluation. Since the rail height of the 2019 MASH 2-Tube Bridge Rail was 38 inches, a dummy was placed in the front seat of the 2270P vehicle on the impact side and restrained with lap and shoulder belts.

4.3.3 Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point;
- One placed behind the installation at an angle; and
- A third placed to have a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on each impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the 2019 MASH 2-Tube Bridge Rail. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

This page intentionally left blank.

Chapter 5. *MASH* TEST 4-12 (CRASH TEST NO. 608331-01-1A)

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 4-12 involves a 10000S vehicle weighing 22,046 lb \pm 660 lb impacting the CIP of the bridge rail at an impact speed of 56 mi/h \pm 2.5 mi/h, and an angle of 15° \pm 1.5°. The target CIP for MASH Test 4-12 on the 2019 MASH 2-Tube Bridge Rail was 5.0 ft \pm 1 ft upstream of the centerline of post 5.

The 2011 International 4300 single-unit truck used in the test weighed 22,050 lb, and the actual impact speed and angle were 57.4 mi/h and 15.5°, respectively. The actual impact point was 4.6 ft upstream of the centerline of post 5. Minimum target impact severity (IS) was 142 kip-ft, and the actual IS was 173 kip-ft.

5.2 WEATHER CONDITIONS

The test was performed on the morning of December 10, 2018. Weather conditions at the time of testing were as follows: wind speed: 4 mi/h; wind direction: 290° (vehicle was traveling in a northwesterly direction); temperature: 48°F; relative humidity: 75 percent.

5.3 TEST VEHICLE

Figures 5.1 and 5.2 show the 2011 International 4300 single-unit truck used for the crash test. The vehicle's test inertia weight was 22,050 lb, and its gross static weight was 22,050 lb. The height to the lower edge of the vehicle bumper was 19.0 inches, and height to the upper edge of the bumper was 34.0 inches. The height to the center of gravity of the vehicle's ballast was 61.25 inches. Tables C.1 in Appendix C1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 5.1. 2019 MASH 2-Tube Bridge Rail/Test Vehicle Geometrics for Test No. 608331-01-1A.

Figure 5.2. Test Vehicle before Test No. 608331-01-1A.

5.4 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 57.4 mi/h when it contacted the 2019 MASH 2-Tube Bridge Rail 4.6 ft upstream of the centerline of post 5, at an impact angle of 15.5°. Table 5.1 lists events that occurred during Test No. 608331-01-1A. Figures C.1 and C.2 in Appendix C2 present sequential photographs during the test.

TIME (s)	EVENTS
0.0000	Vehicle contacts bridge rail
0.0820	Vehicle begins to redirect
0.1140	Right front tire lifts from pavement
0.2450	Back left side of vehicle contacts barrier
0.3030	Vehicle is parallel with barrier
1.0310	Right front tire contacts pavement
1.5470	Vehicle loses contact with bridge rail (out of view of high-speed camera)

Table 5.1. Events during Test No. 608331-01-1A.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 65.6 ft downstream from loss of contact for the 10000S vehicle). The test vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle came to rest 232 ft downstream of the impact and 7 ft toward the field side of the installation.

5.5 DAMAGE TO TEST INSTALLATION

Figures 5.3 and 5.4 show the damage to the 2019 MASH 2-Tube Bridge Rail. The traffic face of the bridge rail was scuffed with tire marks, and the lower rail element was gouged in the impact area. The curb was cracked on the downstream side of post 5 and just upstream of post 5 (see Figure 5.4). Working width was 56.7 inches at a height of 136.8 inches. Maximum

dynamic deflection during the test was 3.0 inches, and maximum permanent deformation was 2.0 inches.

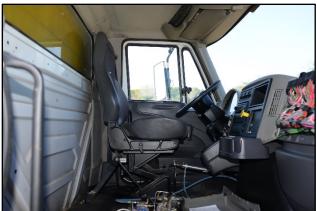
Figure 5.3. Overall Damage to Alaska Bridge Rail after Test No. 608331-01-1A.

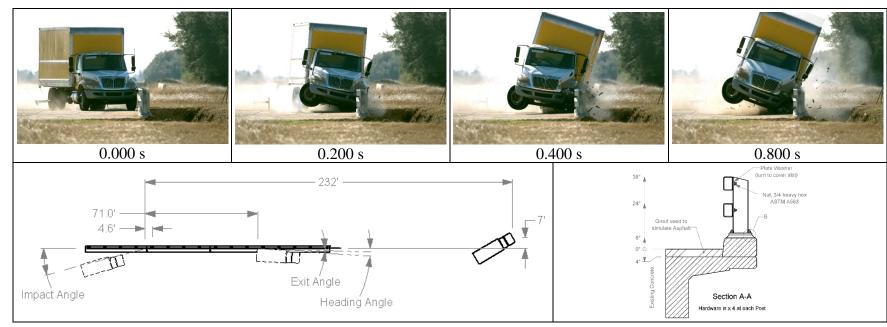
Figure 5.4. Impact Area after Test No. 608331-01-1A.

5.6 VEHICLE DAMAGE

Figure 5.5 shows the damage sustained by the vehicle. The front bumper, hood, left front tire and rim, left front U-bolts, left battery box, left side steps, left door, left rear cab corner, lower edge of box, and left rear outer tire and rim were damaged. Maximum exterior crush to the vehicle was 12.0 inches in the front plane at the left front corner at bumper height. Maximum occupant compartment deformation was 5.5 inches in the left front corner of the floor pan. Figure 5.6 shows the interior of the vehicle.

Figure 5.5. Test Vehicle after Test No. 608331-01-1A.




Figure 5.6. Interior of Test Vehicle after Test No. 608331-01-1A.

5.7 OCCUPANT RISK FACTORS

Occupant risk factors are not required for the test with the 10000S vehicle. Data from the accelerometers, located at the vehicles longitudinal center of gravity, were digitized for information purposes only and results are shown in Table 5.2. Figure 5.7 summarizes these data and other pertinent information from the test. Figure C.3 in Appendix C3 shows the vehicle angular displacements, and Figures C.4 through C.9 in Appendix C4 show accelerations versus time traces.

Table 5.2. Occupant Risk Factors for Test No. 608331-01-1A.

Occupant Risk Factor	Value	Time
Occupant Impact Velocity (OIV)		
Longitudinal	6.2 ft/s	at 0.2057 s on left side of interior
Lateral	12.1 ft/s	at 0.2037's on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	3.0 g	0.4539 - 0.4639 s
Lateral	6.8 g	0.2695 - 0.2795 s
Theoretical Head Impact Velocity (THIV)	15.4 km/h 4.3 m/s	at 0.1995 s on left side of interior
Post Head Deceleration (PHD)	6.9 g	0.2695 - 0.2795 s
Acceleration Severity Index (ASI)	0.43	0.1106 - 0.1606 s
Maximum 50-ms Moving Average		
Longitudinal	-1.6 g	0.0405 - 0.0905 s
Lateral	4.2 g	0.2850 - 0.3350 s
Vertical	-4.1 g	0.2966 - 0.3466 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	19°	0.4970 s
Pitch	9 °	2.0000 s
Yaw	19°	0.5056 s

		_	
General Information Test AgencyTest Standard Test No TTI Test No		Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
Test Date		post 5	Maximum Yaw Angle 19°
Test Article	2010 12 10	Impact Severity 173 kip-ft	Maximum Pitch Angle 9°
Type	Bridge Rail	Exit Conditions	Maximum Roll Angle 19°
	2019 MASH 2-Tube Bridge Rail	Speed Not obtainable	Vehicle Snagging No
Installation Length	154 ft	Angle Not obtainable	Vehicle Pocketing No
Material or Key Elements	Two Steel Tubular Rail Elements on	Occupant Risk Values	Test Article Deflections
	Fabricated Steel Posts spaced at 10 ft	Longitudinal OIV 6.2 ft/s	Dynamic 3.0 inches
	with 24-inch and 38-inch rail heights and	Lateral OIV 12.1 ft/s	Permanent 2.0 inches
	mounted to concrete curb	Longitudinal Ridedown 3.0 g	Working Width 56.7 inches
	Installed on Reinforced Concrete Bridge	Lateral Ridedown 6.8 g	Height of Working Width 136.8 inches
Soil Type and Condition	Deck, Damp	THIV 15.4 km/h	Vehicle Damage
		PHD 6.9 g	VDS NA
Test Vehicle	10000S	ASI 0.43	CDC 11FREW4
Type/Designation		Max. 0.050-s Average	Max. Exterior Deformation 12.0 inches
Make and Model	14,000 lb	Longitudinal1.6 g	OCDI NA
Curb	22,050 lb	Lateral 4.2 g	Max. Occupant Compartment
Test Inertial		Vertical4.1 g	Deformation 5.5 inches
Dummy Gross Static			

Figure 5.7. Summary of Results for MASH Test 4-12 on 2019 MASH 2-Tube Bridge Rail.

This page intentionally left blank.

Chapter 6. *MASH* TEST 4-11 (CRASH TEST NO. 608331-01-2)

6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 4-11 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the CIP of the bridge rail at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25° ± 1.5 °. The target CIP for MASH Test 4-11 on the 2019 MASH 2-Tube Bridge Rail was 4.3 ± 1 ft upstream of the centerline of post 9.

The 2012 RAM 1500 pickup truck used in the test weighed 5019 lb, and the actual impact speed and angle were 62.9 mi/h and 24.9°, respectively. The actual impact point was 4.2 ft upstream of the centerline of post 9. Minimum target IS was 106 kip-ft, and the actual IS was 118 kip-ft.

6.2 WEATHER CONDITIONS

The test was performed on the morning of December 12, 2018. Weather conditions at the time of testing were as follows: wind speed: 9 mi/h; wind direction: 165° (vehicle was traveling in a northwesterly direction); temperature: 61°F; relative humidity: 87 percent.

6.3 TEST VEHICLE

Figures 6.1 and 6.2 show the 2012 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5019 lb, and its gross static weight was 5184 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 29.0 inches. Tables D.1 and D.2 in Appendix D1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.1. 2019 MASH 2-Tube Bridge Rail/Test Vehicle Geometrics for Test No. 608331-01-

Figure 6.2. Test Vehicle before Test No. 608331-01-2.

6.4 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 62.9 mi/h when it contacted the 2019 MASH 2-Tube Bridge Rail 4.2 ft upstream of the centerline of post 9 at an impact angle of 24.9°. Table 6.1 lists events that occurred during Test No. 608331-01-2. Figures D.1 and D.2 in Appendix D2 present sequential photographs during the test.

Table 6.1. Events during Test No. 608331-01-2.

TIME (s)	EVENTS		
0.0000	Vehicle contacts barrier		
0.0180	Lower metal rail element begins to deflect		
0.0210	Upper metal rail element begins to deflect		
0.0220	Vehicle begins to redirect		
0.0290	Crack forms on downstream side of post 9 radiating from front bolt		
0.0340	Bumper reaches post 9		
0.0350	Crack forms on downstream side of post 9 radiating from rear bolt		
0.0370	Crack forms on upstream side of post 9 radiating from rear bolt		
0.0650	Crack forms on upstream side of post 8 radiating from front bolt		
0.1670	Vehicle parallel with bridge rail		
0.1720	Rear of vehicle contacts bridge rail		
0.2800	Vehicle loses contact with bridge rail while traveling at 52.9 mi/h and		
	exit trajectory/heading of 8.7°/6.5°		

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle came to rest 230 ft downstream of the impact with the nose of the vehicle in line with the traffic face of the bridge rail.

6.5 DAMAGE TO TEST INSTALLATION

Figures 6.3 and 6.4 show the damage to the 2019 MASH 2-Tube Bridge Rail. The metal rail elements were scuffed with tire marks and cosmetic damage. The concrete around the curb at post 8 was cracked. The concrete around post 9 was cracked and spalled off, revealing the rebar on the field side of the curb and on the underside of the deck. Working width was 20.2 inches at the top of post 9. Maximum dynamic deflection during the test was 7.1 inches, and maximum permanent deformation was 2.0 inches.

Figure 6.3. 2019 MASH 2-Tube Bridge Rail after Test No. 608331-01-2.

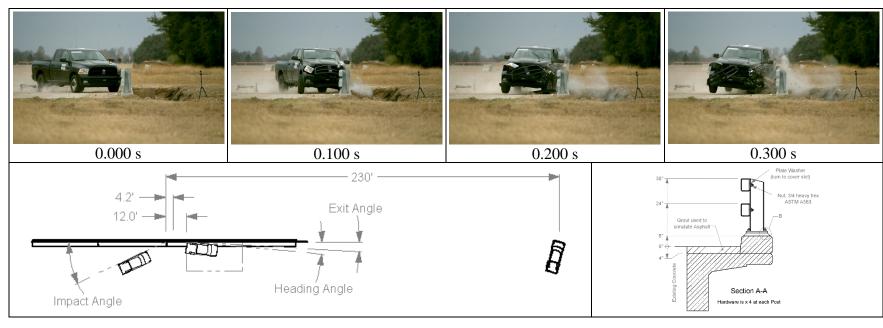
Figure 6.4. Damage at Post 9 after Test No. 608331-01-2.

6.6 VEHICLE DAMAGE

Figure 6.5 shows the damage sustained by the vehicle. The front bumper, hood, grill, left tire and rim, left upper and lower A-arms, left upper and lower ball joints, left tie rod end, left front fender, left front and rear doors, left rear cab corner, left rear exterior bed, left rear rim, rear bumper, and tailgate were damaged. The windshield sustained stress cracks radiating up and out from the left lower corner. Maximum exterior crush to the vehicle was 11.0 inches in the side plane at the left front corner at bumper height. Maximum occupant compartment deformation

was 0.5 inch in the left front firewall area. Figure 6.6 shows the interior of the vehicle. Tables D.3 and D.4 in Appendix D1 provide exterior crush and occupant compartment measurements.

Figure 6.5. Test Vehicle after Test No. 608331-01-2.


Figure 6.6. Interior of Test Vehicle for Test No. 608331-01-2.

6.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 6.2. Figure 6.7 summarizes these data and other pertinent information from the test. Figure D.3 in Appendix D3 shows the vehicle angular displacements, and Figures D.4 through D.9 in Appendix D4 show accelerations versus time traces.

Table 6.2. Occupant Risk Factors for Test No. 608331-01-2.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	16.7 ft/s	at 0.0957 s on left side of interior
Lateral	29.5 ft/s	at 0.0937 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	8.2 g	0.1173 - 0.1273 s
Lateral	13.6 g	0.2099 - 0.2199 s
THIV	37.6 km/h	at 0.0933 s on left side of interior
	10.5 m/s	
PHD	13.6 g	0.2099 - 0.2199 s
ASI	2.21	0.0626 - 0.1126 s
Maximum 50-ms Moving Average		
Longitudinal	-7.9 g	0.0276 - 0.0776 s
Lateral	17.0 g	0.0421 - 0.0921 s
Vertical	3.7 g	0.0815 - 0.1315 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	5 °	0.3752 s
Pitch	3 °	0.4918 s
Yaw	33°	0.4177 s

General Information Test Agency Test Standard Test No	Texas A&M Transportation Institute (TTI)	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance	. 230 ft downstream
TTI Test No		Location/Orientation 4.2 ft upstream of	Vehicle Stability	
Test Date	2018-12-12	post 9	Maximum Yaw Angle	. 33°
Test Article		Impact Severity118 kip-ft	Maximum Pitch Angle	. 3°
Туре	Bridge Rail	Exit Conditions	Maximum Roll Angle	
	2019 MASH 2-Tube Bridge Rail	Speed 52.9 mi/h	Vehicle Snagging	. No
Installation Length	154 ft	Exit Trajectory/Heading 8.7°/6.5°	Vehicle Pocketing	. No
Material or Key Elements	Two Steel Tubular Rail Elements on	Occupant Risk Values	Test Article Deflections	
	Fabricated Steel Posts spaced at 10 ft	Longitudinal OIV 16.7 ft/s	Dynamic	. 7.1 inches
	with 24-inch and 38-inch rail heights and	Lateral OIV29.5 ft/s	Permanent	. 2.0 inches
	mounted to concrete curb Installed on	Longitudinal Ridedown 8.2 g	Working Width	
	Reinforced Concrete Bridge Installed on	Lateral Ridedown 13.6 g	Height of Working Width	. 38 inches, or Top
Soil Type and Condition	Deck, Damp	THIV 37.6 km/h	Vehicle Damage	of post
		PHD 13.6 g	VDS	
Test Vehicle		ASI 2.21	CDC	
Type/Designation	2270P	Max. 0.050-s Average	Max. Exterior Deformation	. 11FLEW4
Make and Model		Longitudinal7.9 g	OCDI	
Curb	4902 lb	Lateral 17.0 g	Max. Occupant Compartment	
Test Inertial	5019 lb	Vertical 3.7 g	Deformation	
Dummy	165 lb			0.5 inch
Gross Static	5184 lb			

Figure 6.7. Summary of Results for MASH Test 4-11 on 2019 MASH 2-Tube Bridge Rail.

This page intentionally left blank.

Chapter 7. *MASH* TEST 4-10 (CRASH TEST NO. 608331-01-3)

7.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 4-10 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the CIP of the 2019 MASH 2-Tube Bridge Rail at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25° ± 1.5 °. The target CIP for MASH Test 4-10 on the 2019 MASH 2-Tube Bridge Rail was 3.6 ft ± 1 ft upstream of the centerline of post 13.

The 2010 Kia Rio* used in the test weighed 2454 lb, and the actual impact speed and angle were 62.5 mi/h and 25.3°, respectively. The actual impact point was 3.5 ft upstream of the centerline of post 13. Minimum target IS was 51 kip-ft, and the actual IS was 58 kip-ft.

7.2 WEATHER CONDITIONS

The test was performed on the morning of December 14, 2018. Weather conditions at the time of testing were as follows: wind speed: 13 mi/h; wind direction: 309 degrees (vehicle was traveling in a northwesterly direction); temperature: 46°F; relative humidity: 86 percent.

7.3 TEST VEHICLE

Figures 7.1 and 7.2 show the 2010 Kia Rio used for the crash test. The vehicle's test inertia weight was 2454 lb, and its gross static weight was 2619 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and height to the upper edge of the bumper was 21.5 inches. Table E.1 in Appendix E1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.1. 2019 MASH 2-Tube Bridge Rail/Test Vehicle Geometrics for Test No. 608331-01-3.

^{*} The 2010 model vehicle used is older than the 6-year age noted in *MASH*, and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2010 model vehicle met the *MASH* requirements.

Figure 7.2. Test Vehicle before Test No. 608331-01-3.

7.4 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 62.5 mi/h when it contacted the 2019 MASH 2-Tube Bridge Rail 3.5 ft upstream of the centerline of post 13 at an impact angle of 25.3°. Table 7.1 lists events that occurred during Test No. 608331-01-3. Figures E.1 and E.2 in Appendix E2 present sequential photographs during the test.

	9
TIME (s)	EVENTS
0.0000	Vehicle impacts bridge rail
0.0160	Metal rail element begins to deflect
0.0240	Vehicle begins to redirect
0.0280	Bumper reaches post 13
0.0840	Dummy's head shatters left front door glass
0.1180	Dummy's head at max extension out of vehicle, but no contact with rail
0.2190	Vehicle parallel with bridge rail
0.2350	Rear of vehicle contacts bridge rail
0.3130	Vehicle loses contact with bridge rail while traveling at 45.3 mi/h and exit trajectory/heading of 4.8°/6.0°

Table 7.1. Events during Test No. 608331-01-3.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle came to rest 140 ft downstream of the impact and 11 ft toward the field side.

7.5 DAMAGE TO TEST INSTALLATION

Figure 7.3 and 7.4 show the damage to the 2019 MASH 2-Tube Bridge Rail. The metal rail elements were scuffed with tire marks and cosmetic damage. The concrete around the base

of post 13 was broken through the curb on both sides of the post and extended to the bottom of the deck. Working width was 8.5 inches at a height of 44.3 inches. Maximum dynamic deflection during the test was 2.8 inches, and maximum permanent deformation was 1.0 inch.

Figure 7.3. 2019 MASH 2-Tube Bridge Rail after Test No. 608331-01-3.

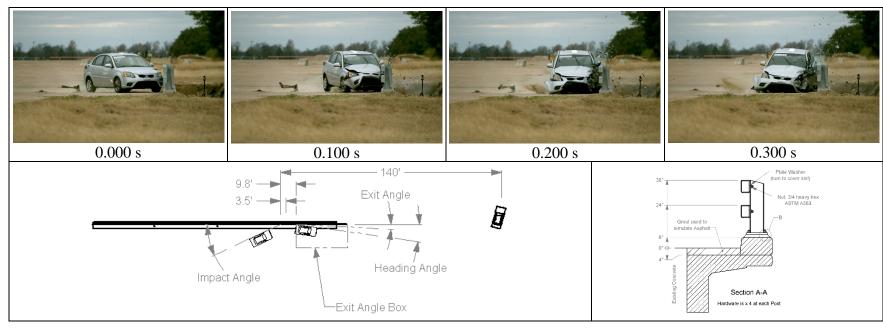
Figure 7.4. Damage at Post 13 after Test No. 608331-01-3.

7.6 VEHICLE DAMAGE

Figure 7.5 shows the damage sustained by the vehicle. The front bumper, hood, radiator and support, left front fender, left front tire and rim, left front strut and tower, left A-post, roof, left front door and window glass, left rear door, left rear quarter panel, and rear bumper were damaged. The windshield sustained stress cracks radiating upward and outward from the left lower corner. Maximum exterior crush to the vehicle was 11.0 inches in the side plane at the left front corner at bumper height. Maximum occupant compartment deformation was 4.0 inches in the left front firewall area. Figure 7.6 shows the interior of the vehicle. Tables E.2 and E.3 in Appendix E1 provide exterior crush and occupant compartment measurements.

Figure 7.5. Test Vehicle after Test No. 608331-01-3.

Figure 7.6. Interior of Test Vehicle for Test No. 608331-01-3.


7.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 7.2. Figure 7.7 summarizes these data and other pertinent information from the test. Figure E.3 in Appendix E3 shows the

vehicle angular displacements, and Figures E.4 through E.9 in Appendix E4 show accelerations versus time traces.

Table 7.2. Occupant Risk Factors for Test No. 608331-01-3.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	30.2 ft/s	at 0.0741 s on left side of interior
Lateral	30.8 ft/s	at 0.0741 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	15.3 g	0.1513 - 0.1613 s
Lateral	6.3 g	0.1556 - 0.1656 s
THIV	46.9 km/h 13.0 m/s	at 0.0723 s on left side of interior
PHD	16.4 g	0.1512 - 0.1612 s
ASI	2.65	0.0459 - 0.0959 s
Maximum 50-ms Moving Average		
Longitudinal	-17.3 g	0.0256 - 0.0756 s
Lateral	18.4 g	0.0166 - 0.0666 s
Vertical	-3.3g	0.0244 - 0.0744 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	5 °	0.5011 s
Pitch	5 °	0.3087 s
Yaw	34 °	0.4335 s

General Information Test Agency	Texas A&M Transportation Institute (TTI)	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
Test Standard Test No	MASH Test 4-10	Angle 25.3°	11 ft twd field side
TTI Test No		Location/Orientation 3.5 ft upstream of	Vehicle Stability
Test Date	2018-12-14	post 13	Maximum Yaw Angle 34°
Test Article		Impact Severity58 kip-ft	Maximum Pitch Angle 5°
Type	Bridge Rail	Exit Conditions	Maximum Roll Angle 5°
	2019 MASH 2-Tube Bridge Rail	Speed 45.3 mi/h	Vehicle Snagging No
Installation Length	154 ft	Exit Trajectory/Heading 4.8°/6.0°	Vehicle Pocketing No
Material or Key Elements	Two Steel Tubular Rail Elements on	Occupant Risk Values	Test Article Deflections
·	Fabricated Steel Posts spaced at 10 ft	Longitudinal OIV 30.2 ft/s	Dynamic 2.8 inches
	with 24-inch and 38-inch rail heights and	Lateral OIV 30.8 ft/s	Permanent 1.0 inch
	mounted to concrete curb Installed on	Longitudinal Ridedown 15.3 g	Working Width 8.5 inches
	Reinforced Concrete Bridge	Lateral Ridedown 6.3 g	Height of Working Width 44.3 inches
Soil Type and Condition	Deck, Damp	THIV 46.9 km/h	Vehicle Damage
Test Vehicle		PHD 16.4 g	VDS 11LFQ5
Type/Designation	1100C	ASI 2.65	CDC 11FLEW4
Make and Model	2010 Kia Rio	Max. 0.050-s Average	Max. Exterior Deformation 11.0 inches
Curb	2484 lb	Longitudinal17.3 g	OCDI LF0030000
Test Inertial	2454 lb	Lateral 18.4 g	Max. Occupant Compartment
Dummy	165 lb	Vertical3.3 g	Deformation 4.0 inches
Gross Static	2619 lb	-	

Figure 7.7. Summary of Results for MASH Test 4-10 on 2019 MASH 2-Tube Bridge Rail.

This page intentionally left blank.

Chapter 8. SUMMARY AND CONCLUSIONS

8.1 ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* TL4, which involves three tests on the 2019 MASH 2-Tube Bridge Rail. An assessment of each test based on the applicable safety evaluation criteria for *MASH* TL-4 for longitudinal barriers is provided in Tables 8.1 through 8.3.

8.2 CONCLUSIONS

The 2019 MASH 2-Tube Bridge Rail performed acceptably for *MASH* TL-4 longitudinal barriers, as shown in Table 8.4.

Table 8.1. Performance Evaluation Summary for MASH Test 4-12 on 2019 MASH 2-Tube Bridge Rail.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 608331-01-1A Te	est Date: 2018-12-10
	MASH Test 4-12 Evaluation Criteria	Test Results	Assessment
Stri A.	uctural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The 2019 MASH 2-Tube Bridge Rail contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the metal rail elements during the test was 3.0 inches.	Pass
Occ D.	Cupant Risk Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Maximum occupant compartment deformation was 5.5 inches in the left front corner of the floor pan.	Pass
G.	It is preferable, although not essential, that the vehicle remain upright during and after collision.	The 10000S vehicle remained upright during and after the collision event.	Pass
Vel	nicle Trajectory		
	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the "exit box" criteria (not less than 65.6 ft for the 10000S vehicle), and should be documented.	The 10000S vehicle exited within the exit box criteria.	Documentation only

Table 8.2. Performance Evaluation Summary for MASH Test 4-11 on 2019 MASH 2-Tube Bridge Rail.

Test Agency: Texas A&M Transportation Institute Test No.: 608331-01-2 Test Date: 2018-12-12

	MASH Test 4-11 Evaluation Criteria	Test Results	Assessment
Str	uctural Adequacy		
A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The 2019 MASH 2-Tube Bridge Rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the metal rail elements during the test was 7.1 inches.	Pass
Oce	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	Some spalling of the concrete curb and deck on the field side occurred during the test; however, this debris did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Maximum occupant compartment deformation was 0.5 inches in the left front firewall area.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 5° and 3°, respectively.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Maximum longitudinal OIV was 16.7 ft/s, and maximum lateral OIV was 29.5 ft/s	Pass
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Longitudinal occupant ridedown acceleration was 8.2 g, and lateral occupant ridedown acceleration was 13.6 g	Pass
Vel	nicle Trajectory		
	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the "exit box" criteria (not less than 32.8 ft for the 1100C and 2270P vehicles), and should be documented.	The 2270P vehicle exited within the exit box criteria.	Documentation only

Table 8.3. Performance Evaluation Summary for MASH Test 4-10 on 2019 MASH 2-Tube Bridge Rail.

Test Agency: Texas A&M Transportation Institute Test No.: 608331-01-3 Test Date: 2018-12-14

	MASH Test 4-10 Evaluation Criteria	Test Results	Assessment
Str	uctural Adequacy		
A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The 2019 MASH 2-Tube Bridge Rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the metal rail elements during the test was 2.8 inches.	Pass
Occ	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	Slight spalling of the concrete deck occurred at post 13 during the test; however, this debris did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Maximum occupant compartment deformation was 4.0 inches in the left front firewall area.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 5° each.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Maximum longitudinal OIV was 30.2 ft/s, and maximum lateral OIV was 30.8 ft/s	Pass
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Longitudinal occupant ridedown acceleration was 15.3 g, and lateral occupant ridedown acceleration was 6.3 g	Pass
Vel	nicle Trajectory		
	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the "exit box" criteria (not less than 32.8 ft for the 1100C and 2270P vehicles), and should be documented.	The 1100C vehicle exited within the exit box criteria.	Documentation only

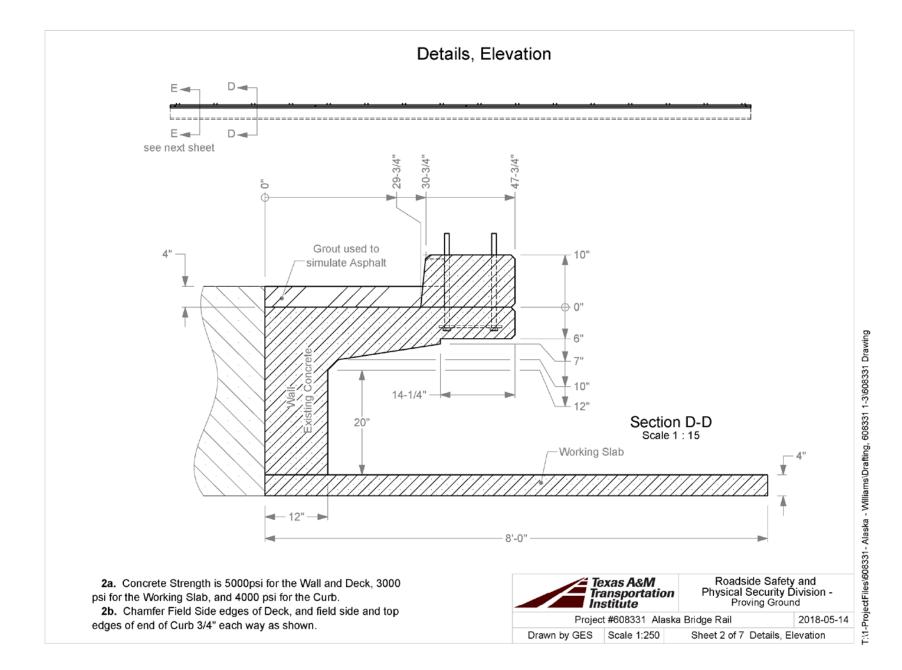
Table 8.4. Assessment Summary for MASH TL-4 Tests on 2019 MASH 2-Tube Bridge Rail.

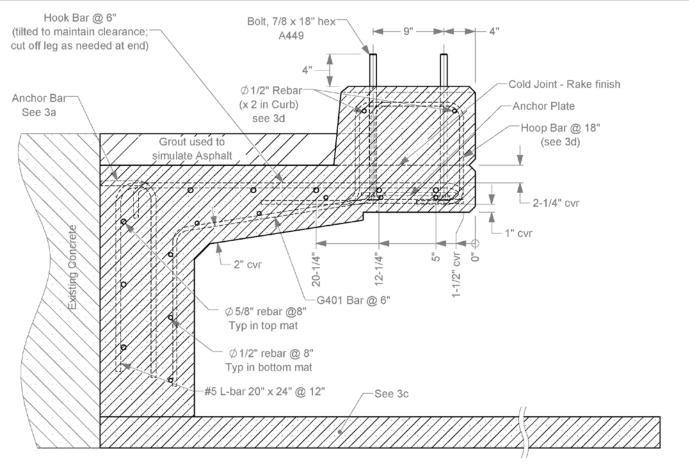
Evaluation Factors	Evaluation Criteria			Test No. 608331-01-1A	
Structural Adequacy	Δ		S	S	
	D	S	S	S	
	F	S	S	N/A	
Occupant Risk	G	N/A	N/A	S	
	Н	S	S	N/A	
I		S	S	N/A	
Test No.		MASH Test 4-10	MASH Test 4-11	MASH Test 4-12	
	Pass/Fail	Pass	Pass	Pass	

S = Satisfactory

U = Unsatisfactory N/A = Not Applicable

This page intentionally left blank.


REFERENCES


- AASHTO/FHWA Joint Implementation Agreement for Manual for Assessing Safety Hardware (MASH).
 https://safety.fhwa.dot.gov/roadway_dept/countermeasures/reduce_crash_severity/docs/memo_joint_implementation_agmt.pdf, January 7, 2016, last access January 2019.
- 2. AASHTO. *Manual for Assessing Roadside Safety Hardware, Second Edition.* 2016, American Association of State Highway and Transportation Officials: Washington, D.C.
- 3. H. E. Ross, D. L. Sicking, R. A. Zimmer, and J. D. Michie, *Recommended Procedures* for the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, D.C., 1993.
- 4. C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. *NCHRP Report 350 Test 4-10 of the Alaska Multi-State Bridge Rail*, Test Report No.; 404311-1, Texas A&M Transportation Institute, College Station, TX, December 1998.
- 5. C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. *NCHRP Report 350 Test 4-11 of the Alaska Multi-State Bridge Rail*, Test Report No.; 404311-2, Texas A&M Transportation Institute, College Station, TX, December 1998.
- 6. C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. *NCHRP Report 350 Test 4-12 of the Alaska Multi-State Bridge Rail*, Test Report No.; 404311-3, Texas A&M Transportation Institute, College Station, TX, February 1998.
- 7. C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. *NCHRP Report 350 Test 4-21 of the Alaska Multi-State Bridge Rail Thrie-Beam Transition*, Test Report No.; 404311-5, Texas A&M Transportation Institute, College Station, TX, July 1999.
- 8. C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. *NCHRP Report 350 Test 4-22 of the Alaska Multi-State Bridge Rail Thrie-Beam Transition*, Test Report No.; 404311-6, Texas A&M Transportation Institute, College Station, TX, July 1999.
- 9. C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. *NCHRP Report 350 Test 3-21 of the Alaska Multi-State Bridge Rail W-Beam Transition*, Test Report No.; 404311-7, Texas A&M Transportation Institute, College Station, TX, July 2000.
- 10. C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. *NCHRP Report 350 Test 3-20 of the Alaska Multi-State Bridge Rail W-Beam Transition*, Test Report No.; 404311-8, Texas A&M Transportation Institute, College Station, TX, August 2000.

This page intentionally left blank.

115'-7" **Test Installation** 75'-7" Concrete Dimensions .0 Plan View 150'-0" Post to Post C – 10'-0" Тур **Elevation View** 30' Plate Washer (turn to cover slot) 38" 8 8 Nut, 3/4 heavy hex T:\1-ProjectFiles\608331- Alaska - Williams\Drafting, 608331 1-3\608331 Drawing ASTM A563 24" 0 0 Grout used to simulate Asphalt 2" (Deck and Curb) -6" Nut, 7/8 heavy hex 0" ASTM A563 Washer, 7/8 hardened Existing Concrete ASTM F436 Detail C 1-1/2" non-shrink grout Scale 1:20 Typ each Rail joint (7) and Deck and Curb joint (2) Section A-A Scale 1 : 20 Hardware is x 4 at each Post Roadside Safety and Physical Security Division -Proving Ground Texas A&M Transportation Institute Detail B Nut, 7/8 heavy hex ASTM A563 Scale 1:5 Project #608331 Alaska Bridge Rail 2018-05-14 Drawn by GES Scale 1:250 Sheet 1 of 7 Test Installation

APPENDIX A. **DETAILS OF THE 2019 MASH 2-TUBE BRIDGE** RAIL

3a. Place the Anchor Bars @ maximum 18" spacing and secure to existing rebar protruding from the runway with minimum 3" weld. (Existing rebar not shown here.)

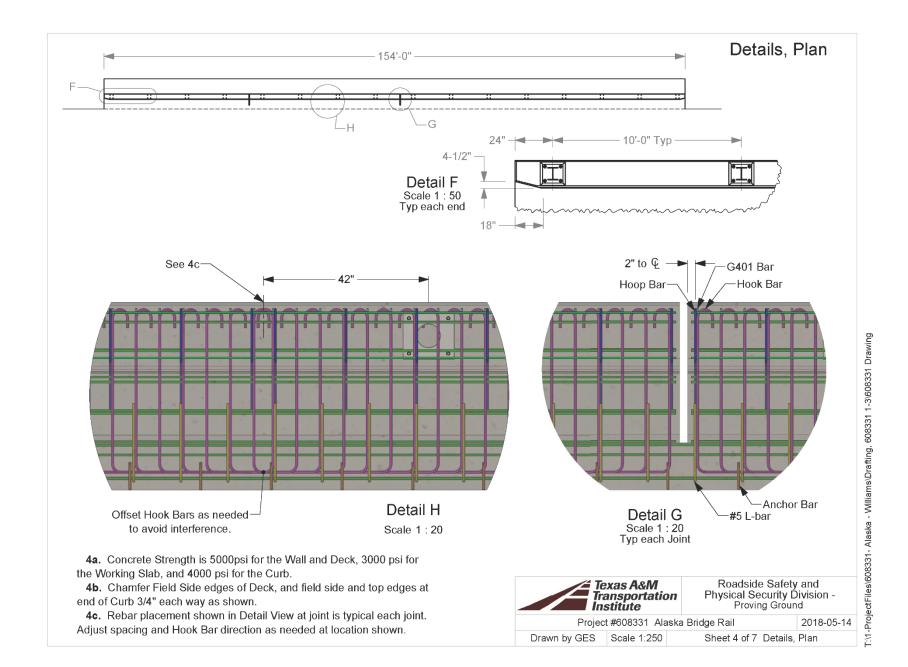
- 3b. Minimum rebar lap is 24" for #4 bars and 30" for #5 bars.
- **3c.** Place one mat of Ø1/2 (#4) bars in Working Slab @ 12" each way with ≈1-1/2" cover at top. These bars are not shown here.
- **3d.** Field bend traffic side longitudinal bar and turn Hoop Bars at ends of Curb to maintain cover.
- **3e.** The Anchor Bars will be bare steel, and the bars in the Working Slab may be bare steel. All other bars shall be epoxy coated, and all bars are grade 60.

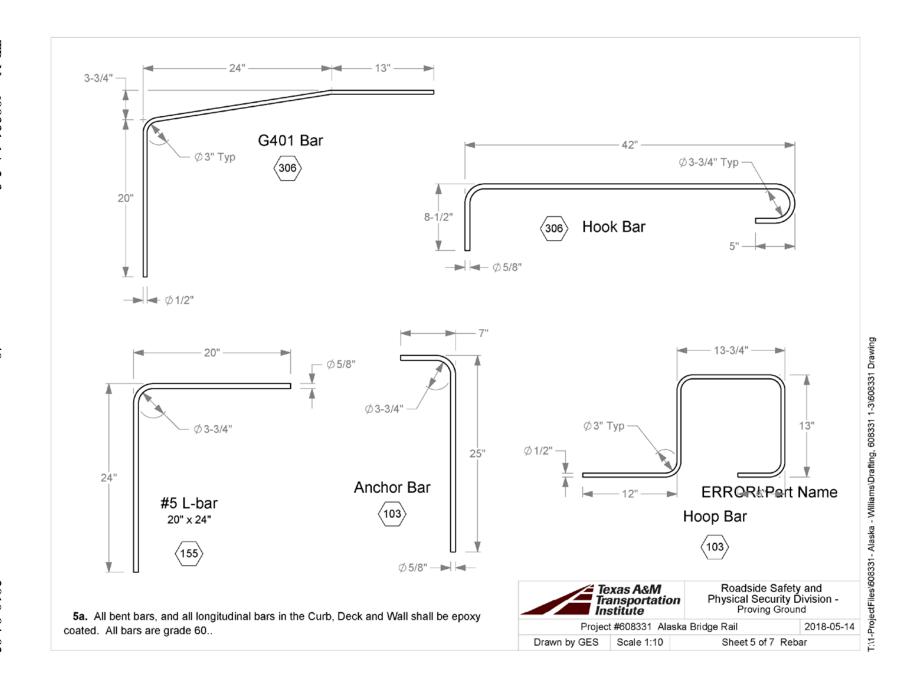
Section E-E

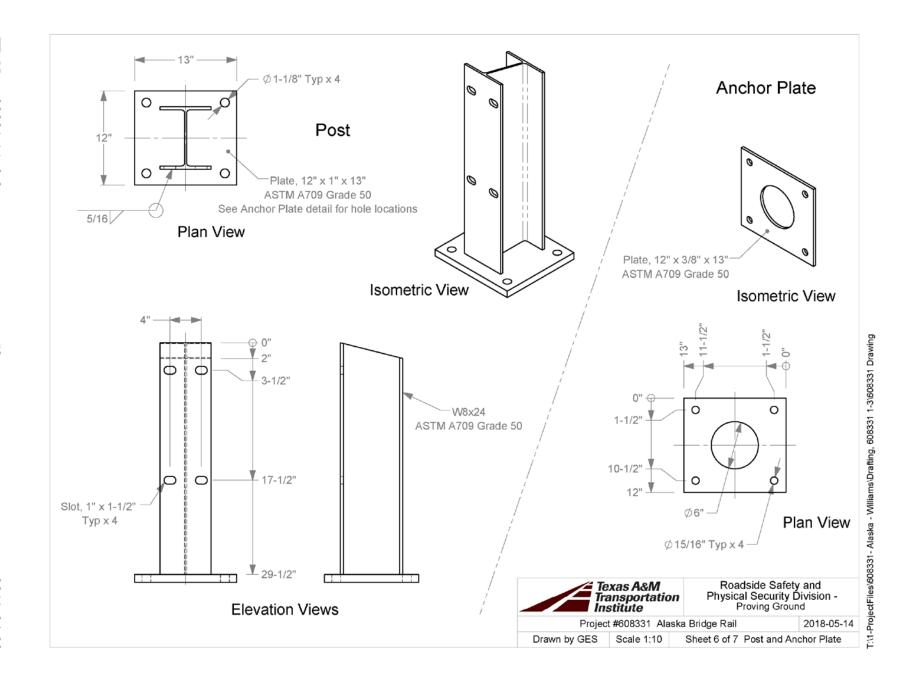
Scale 1:10

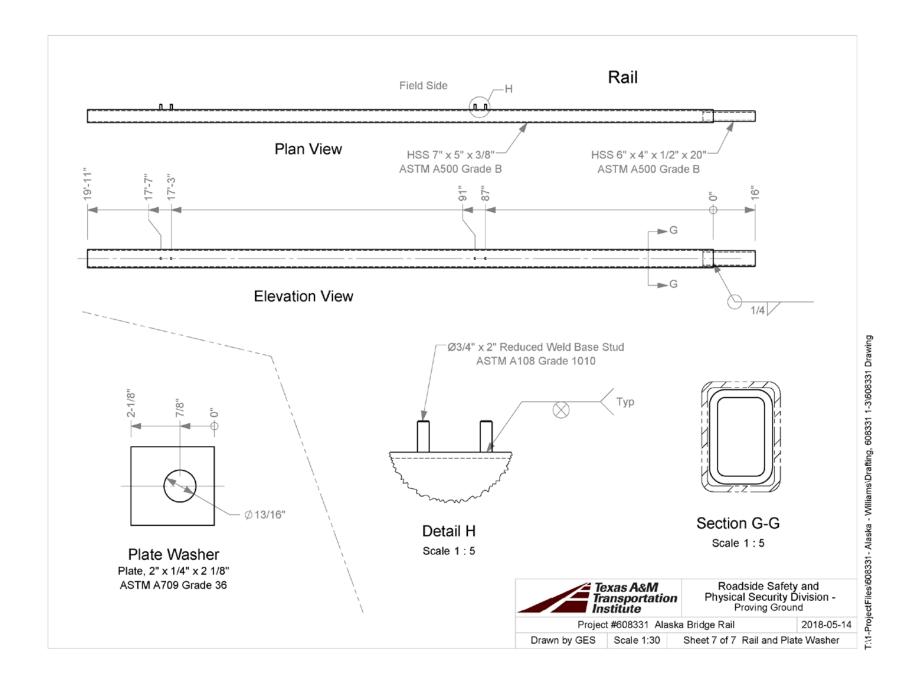
Roadside Safety and Physical Security Division -Proving Ground

Project #608331 Alaska Bridge Rail


2018-05-14


Drawn by GES


Scale 1:10


Sheet 3 of 7 Rebar Details

:\(1-ProjectFiles\(608331- Alaska - Williams\)Drafting, 608331 1-3\(608331 Drawing

This page intentionally left blank.

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

P.O. BOX 2569 **WAXAHACHIE, TX 75168-2569** (972)937-9841 FAX (972)937-3995

ELLIS-MCGINNIS CONSTRUCTION CO. 3100 STATE HWY 47, BLDG 7091 **BRYAN, TX 77807**

Sin#: 1823300820

Load: A

Project: TX A&M TRANSPORTATION ALASKA "TEST" BRIDGE

Control: 608331 County: BRAZOS

Gentlemen:

This is to certify that all reinforcing steel for the above project has been coated in accordance with the TXDOT specifications item 440 and resin manufacturer's recommended specifications requirements.

Representative samples of the coated bars have been tested and the test results conform to the specification requirements.

We further certify Nap Gard 7-2719 or LILLY/VALSPAR 720A009, Scotchkote 413 Fusion Bonded Epoxy Powder from lot(s): 8496027182 to coat reinforcing steel from heats listed below.

All bar is grade (420) 60 unless otherwise noted:

Bar	Size	Weight		Heat #'s	Mill
Metric	Imperial	Metric	Imperial		(other than CMC)
(10)	3	0			
(13)	4	1,090	2,404	6001205	
(16)	5	1,585	3.494	3080435	
(19)	6	0			
(22)	7	0			
(25)	8	0			
(29)	9	0			
(32)	10	0			
(36)	11	0			
	ttl MG's:	2.675	1		

The steel listed was manufactured by CMC Steel, unless otherwise stated above under Mill and shipped A . We further certify that all manufacturing processes have occurred in the United States of America.

SUBSCRIBED AND SWORN TO BEFORE ME, a Notary Public in and for said County and State,

June on this the 28TH

Notary Public, Ellis Co., Texas

2018.

Gabriela Villegas

Contracted Manufacturer of ERICO Lenton Form Saver

CMC STEEL OKLAHOMA 584 Old Highway 70 Durant OK 74701-0000

11%

8IN

CERTIFIED MILL TEST REPORT For additional copies call

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Quality Assurance Manager

of the plant quality manual

"Meets the "Buy America" requirements of 23 CFR635 410

F EAT NO.:6001205 S ECTION: REBAR 13MM (#4) 60'0' C RADE: ASTM A615-16 Gr 420/60 F OLL DATE: 06/13/2018 I ELT DATE: 06/13/2018 C ert. No.: 82415724 / 001205J265		80 L D T O	901 CAN		SHIPTO	CMC Coatings Waxahachie 901 Cantrell St Waxahachie TX US 75165-3120 972 937 9841	9	Delivery#: 824157 BOL#: 72520380 CUST PO#: CUST P/N: DLVRY LBS / HE/	AT: 43204.000 LB
Characteristic	Value			Characteristic		Value		Characteristic	Value
С	0.26%			Bend Test Diameter		1.750IN		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Mn	0.97%			Bend Test 1		Passed			
P	0.011%			Rebar Deformation Avg. S	paci	0.336IN			
S	0.034%			Rebar Deformation Avg. He	eigh	0.029IN			
Si	0.21%			Rebar Deformation Max. G	ap	0.102IN			
Cu	0.26%			Uniform Elongation	,	8.1%			
Cr	0.12%			_		- The state of the			
Ni	0.11%					e de la constante de la consta			

Mo 0.029% ν 0.005% Sn 0.009% ΑI 0.002% The Following is true of the material represented by this MTR: 0.0121% *Material is fully killed Carbon Eq A6 0.48% *100% melted and rolled in the USA Yield Strength test 1 125.1ksi *EN10204:2004 3.1 compliant Yield Strength test 1 (metri 863MPa *Contains no weld repair Tensile Strength test 1 141.0ksi *Contains no Mercury contamination Tensile Strength 1 (metric) 973MPa *Manufactured in accordance with the latest version Elongation test 1

MARKS:

Elongation Gage Lgth test 1

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510

CERTIFIED MILL TEST REPORT

For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

COMMY MEMILE

Quality Assurance Manager

1EAT NO.:3080435	s	CMC COATING WAXAHACHIE	s	CMC Coatings Waxahachie	Delivery#: 82415821
SECTION: REBAR 16MM (#5) 60'0" 420/60	0		Н		BOL#: 72520539
3RADE: ASTM A615-16 Gr 420/60	L	901 CANTRELL STREET	1	901 Cantrell St	CUST PO#:
ROLL DATE: 05/26/2018	D	WAXAHACHIE TX	P	Waxahachie TX	CUST P/N:
//ELT DATE: 05/24/2018		US 75165-3120		US 75165-3120	DLVRY LBS / HEAT: 45060.000 LB
Cert. No.: 82415821 / 080435A002	Т	972-937-9841	Т	972 937 9841	DLVRY PCS / HEAT: 720 EA
	0		0		

Characteristic	Value	Characteristic Value	Characteristic Value
С	0.42%		
Mn	0.75%		
P	0.012%		
s	0.053%		
Si	0.18%		·
Cu	0.31%		
Cr	0.16%		
Ni	0.17%		
Mo	0.079%		
V	0.000%		
Сь	0.001%		
Sn	0.012%		The Following is true of the material represented by this MTR:
Al	0.002%		*Malerial is fully killed
Yield Strength test 1	67.9ksi		*100% melted and rolled in the USA
Tensile Strength test 1	103.4ksi		*EN10204:2004 3.1 compliant
Elongation test 1	16%		*Contains no weld repair
Elongation Gage Lgth test 1	8IN		*Contains no Mercury contamination
Bend Test Diameter	2.188IN		*Manufactured in accordance with the latest version
Bend Test 1	Passed		of the plant quality manual
			"Meets the "Buy America" requirements of 23 CFR635 410

EMARKS:

Valspar Corporation

CERTIFICATION of COMPLIANCE

Date: 5/9/2018

Specification: ASTM A775, ASTM A1078, AASHTO M284, AASHTO M254

Valspar Product Code: 720A009 (Epoxy Powder for Costing)

Batch Number: \$496027182

Production Date: 5/8/2018 (Expiration is 6 months post production date)

Batch Size: 19,800 lbs.

I hereby certify that the above lot of meterial was manufactured to formulation, meeting all the requirements of the above specifications and that this material is chemically the same material that was tested by Valley Forge Laboratories of Devon, PA, or Wiss, Janney, Elstner Associates of Northbrook, II.

The individual signing below has the legal authority to bind Valspar to the material.

Gregory/QC, Supervise

Date

10300 Claude Freeman Drive Charlotte, NC 28262 Phone: (704) 548-2820

Fax: (704) 547-0634

State Commonwealth MICs country of The Kinkury

Month F Yenr.

The undersigned Motary Public, personally appeared Name (1) of Signate) of Signates

To be the perion(er/whose name(s) is/are subscribed to the within inchangen, and relucoviedged to me that he/checker executed the reme for the purposes therein stated.

GINA MATTISON

GINA MATTISON

Notely Fublic, Reich Ceroline

Rowen County

My Commission Expires

Merch 1 I, 2023

Witness my hand and official scal

Signame of Potary Fublic

Other Required Information (Printed Mente of Plottery, Residence, etc.)

The rith let identified above were produced in the United States and qualify as "U.S. anade and products", "domestic construction materials" and "domestic manufactured groots".

The diag on this short to resent measured value. Since application variables are a major factor in product profession, of information therefore conty as a general guide. Valuer excurses no obligation of Biblity for the of this information. Updates Value are against the object of the information. Updates Value are against the profession of the information. Updates Value are against the profession of the object aims all profession warranties of Merchantz electry or princess for a particular use or present the profession pattern in the object. Value are with 1907 as Liable for all profession of the object in the product is the represent of the objective product, or a referred of its purchase price, at our applier.

CMC Epoxy Coatings Quality Control

901 Cantrell Street Waxahachie, TX 75165 972-937-9841

\Vorkbook ID

20180620D1

Production Date

Wednesday, June 20, 2018

InspectorName

Jose

Bedolla

Shift day

Times

4:00 AM 4:00 PM

General Daily Informa	tion							Class Normalism			_			
Lines Running	Line1	Line2	(®) Li	ne3	Line4			Heat Number	rs at Numb	er	Com	ments		
1-4 Operator	Hecto	r		PowderLot		8496027182		11 a 1-4	60009	•0				
Bar Size 1-4	5			Expiration		11/8/2018		1-4	60009	-				
		0	:25				 -	1-4	60009					
Lines Running	Line5	Line6	<u> </u> Li	ne7 🤏	Line8	Line8 **		1-4	600094					
5-8 Operator	Enriqu	ie		PowderLot		8496027182	2	5-8	60012	05				
Bar Size 5-8	4			Expiration		11/8/2018		5-8	600120)4				
Alt imale Powder Lot				Alternate Pow	du									
Contaminants	T2425	2 Uncoated bars fre	f - 11	Expiraton										
# Bundles Checked	2	Bundles OK?	or ons, greases Oty of		0	Noted <1%	0	Noted >1%	. 0	Time	4:25	Comments		
	1		✓		٥		0		0		1:05	Contaminants, Surface Defects and treatment:		
Su:face Defects		. Uncoated bars free	e of excessive sl	vers or detriment	al defec	ets.								
# Bundles Checked	2	Bundles OK?	☑ Qty of	Noted Bars	0	Noted <1%	0	Noted >1%	0	Time	4:25			
	1		\checkmark		0		0		0		1:05			
	Line 1		Line 3	Line 4		Line 5	Line 6	Line 7		ne 8		T3.3.3.1 Grit Blasting Machine, proper equipment operation.		
Grat Blast Equip:OK?	V	V	V	V		V	V	✓		V		T7.1.3.1 Inspect Bar Transport System		
Ba- Transport Sys.?	✓	V	V	V		\checkmark	✓	✓		V				
Chart Recorder Temp	6		der Storage Are recroder charts			PreShipInspe	ection	4:10			Coated Rebar I coated areas.	Prior To Shipment for coating fractures, tears,		
Compressor Temp	17		es each week. Temperature per facturer specifications.			StockInspect	ion	4:20	T11.2.3.1 Inspect Stockpill areas, greases, excessive of			kpiles of Coated Bars Stored in Floor Stock for uncoated ive damage, etc.		
AlermSystem 🔽	Checke	d for Dry Air 🔽	•	er Discharge	charge M Thickness Gaug Calibration			4:05	T9.1.3.2 Calibrated Coating Thic			rness Gauge at 7.35 mils SRM 1362A.		

Bar Coating Times											Bar Temper	peratures										
	Lir e	Test Time	Le	ength	Motor Speed	Blast to Co. t	G I	Quench	Ln Rate	ł Spo	Line	Hi Te		Lo Temp	IR Temp	Time A	IR Temp	ime B	IR Temp	Time C		
	1-4	5:15	Y	60	42 Hz	00:35	:07	00:33	02:02	30 F _l		1 4	50°	425"	421"	5:25	418°	1:10	0			
	5-8	5:25		60	39 Hz	00:50	:09	00:40	02:20	26 F _l		2 4	50°	425°	420°	5:25	421°	1:10	1-			
	1-4	1:05		60	42 Hz	00:35	:07	00:33	02:02	30 F _I		3 4	50°	425°	423°	5:25	417°	1:10	4			
												4 4	50"	425°	420°	5:25	420°	1:10	41			
	T7. L.3.2 Ge T	ime: 7s (min), p	owde	er cloud	to 1st ro	ller.						5 4	50°	425°	418°	5:35	•		e			
		nch Time: 28s m										6 4	50°	425°	420°	5:35	15		ta .			
												7 4	50°	425°	421°	5:35	4.		52			
												ጵ 4	50°	425°	⊿ 19°	5.35	p.		ŞI			

T4.1.3.1 3M Infrared Thermometer (IR16), set at .48 emissivity on black bar and averages 449°F. Crayons Melt at 449°F.

PSI	KVs	Application	7
r 31,	NV3,	MPPIICULIOI	•

	Test A		Te	st B				Abrasive Contaminat	ion	Holid Dete	day ectors				
Line	Time	Pressure A	Electro- Spray static A Applic	Time B	Tressure B			Abrasiv es: Oil			in Line Detecto	Counters In-Line	IL Count Holiday	HH Count	Time
1	5:40	99 psi	100 kV	1:15	99 psi	100 kV	V	\checkmark	\checkmark		V	V	1	1	6:15
2	5:40	99 psi	98 kV ✓	1:15	99 psi	98 kV	¥	\checkmark	\checkmark		V	$\overline{\checkmark}$	1	0	6:15
3	5:40	99 psi	98 kV	1:15	99 psi	98 kV	✓	\checkmark	\checkmark		✓	V	1	1	6:15
4	5:40	97 psi	94 kV 🗹	1:15	99 psi	96 kV	V	✓	V		v	$\overline{\mathbf{V}}$	1	1	6:15
5	5:40	80 psi	70 kV		psi	kV		\checkmark	\checkmark		V	$\overline{\mathbf{V}}$	1	1	6:25
6	5:40	75 psi	70 kV		psi	kV		$ \mathbf{\nabla}$	\checkmark		v	abla	1	1	6:25
7	5:40	20 psi	70 kV		psi	kV		\checkmark	\checkmark		V		1	1	6:25
8	5:40	15 psi	99 kV 🗹		psi	kV		V	\checkmark		V	$ \mathbf{\nabla}$	1	1	6:25

T6.3.3.1 Powder Air Supply (Desiccant)

T6.2.3.1 Spray Application/Electrostatic SystemT3.3.3.2 Oil Contamination in Abrasives. T3.3.3.2 Chlorides in Abrasives.

T8. L.1, T8.1.3.1 In-Line Holiday Detectors and Counters Functioning Properly.

T8. L3.2 Continuity of Coating. Comparison verticiation of holiday detectors.

Bend Test

Line	Angle	Pin Dia	A- Time	A- Bar Temp	A- Bend Seconds	A- Passed	A- Retest?	A- Passed Retest?	B- (*):	8- Bar Temp	B- Bend Seconds	B- Passed	B- Retest?	B- Passed Retest?	C- Time	C- Bar Temp	C- Bend Seconds	C- Passed	C- Relest?	C Passed Retest?
1	180	3.5	5:15	74	3	V			9:15	75	3	V			1:05	79	3	\checkmark		
2	180	3.5	5:15	74	3	\mathbf{V}			9:15	75	3	V			1:05	79	3	$\overline{\mathbf{Y}}$		
3	180	3.5	5:15	74	3	V			9:15	75	3	~			1:05	79	3	\checkmark		
4	180	3.5	5:15	74	3	V			9:15	75	3	V			1:05	79	3	\checkmark		
5	180	3	5:15	75	3	\mathbf{V}			9:15	80	3	\checkmark				70	3			
6	180	3	5:15	75	3	\checkmark			9:15	80	3	V				70	3			
7	180	3	5:15	75	3	\checkmark			9:15	80	3	V				70	3			
8	180	3	5:15	75	3	\checkmark			9:15	80	3	\checkmark				70	3			

T10.1.3.2 Bend Test. Bar temperature less than 86°F. Perform a Bend Test on ALL Heat Numbers.

Bar Tests- CS, BC, Chloride subform

	Time							Backs	ntamir	ation	Profil	e App	peara	nce	Color App				
59	Line	T1.	T2		74	T.		T1	T2	Т3	T4	T1	T2	Т3	T4	T1	T2	Т3	T4
	1	7:00	11:00					10%	12%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	4	7:00	11:00					12%	10%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	3	7:00	11:00					10%	10%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	2	7:00	11:00					10%	10%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	8	6:30	10:30					13%	10%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	5	6:30	10:30					10%	10%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A 5P 10	A SP 10
	6	6:30	10:30					12%	10%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	7	6:30	10:30					13%	10%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	4							0%	0%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	3							0%	0%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	2							0%	0%	0%	0%	5.5	5.5	5 <i>.</i> 5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
201	8							0%	0%	0%	0%	5.5	5.5	5,5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
19-(5							0%	0%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
2019-04-02	6							0%	0%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
02	7							0%	0%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10
	1						-	0%	0%	0%	0%	5.5	5.5	5.5	5.5	A SP 10	A SP 10	A SP 10	A SP 10

CMC Epoxy Coatings Quality Control

901 Cantrell Street Waxahachie, TX 75165 972-937-9841

\Vorkbook ID	201806150	01									Insp	ectorName	Josue	Just	iniano
l'roduction Date	Friday, Jun	e 15, 2018									Shift	Day	Times	4:00 AM	4:00 PM
General Daily Informa	ition								Heat Number	·c		Came	ments		
Lines Running	Line1	Line2		Line3		Line4	C3			at N um be	r	COIII	nents		
1 Operator				Po	wderLot				1 lo n 5-8	308043	5				
Bar Size 1-4				Ex	piration				5-8	307830	5				
Lines Running	Line5	Line6	(0)	Line7	(q)	Line8	•								
5-8 Operator	Enrique	:		Po	wderLot		8496027182								
Bar Size 5-8	5			Ex	piration		11/8/2018								
Ali irnate Powder Lot					ernate Pow piraton	der									
Contaminants	T2.1.3.2 \	Uncoated bars fre	e of oils, g	reases, pain	ts and salts.	•							Comments	1	
# Bundles Checked	1	Bundles OK?	√ Q	ty of Note	d Bars	0	Noted <1%	0	Noted >1%	0	Time	4:05	Contaminant	s, Surface De	efects
	2		V			0		0		0		1:00	and treatme	nt:	
Surface Defects	T2.1.3.1 l	Uncoated bars fre	e of exces	sive slivers o	or detriment	tal defect	ts.								
# Bundles Checked	1	Bundles OK?	☑ Q	ty of Note	d Bars	0	Noted <1%	0	Noted >1%	0	Time	4:05			
	2		\checkmark			0		0		0		1:00			
	Line 1	Line 2	L	ine 3	Line 4		Line 5	Line 6	Line 7	Lin	e 8		T3.3.3.1 Grit B	lasting Machin	ie, proper
Grit Blast Equip:OK?			-				V	V	V		1		equipment op 17.1.3.1 Inspe		rt System
Ba Transport Sys.?	A CONTRACTOR OF THE PARTY OF TH						V	V	. 🗷		✓		·	·	
Chart Recorder Temp	68	" T5.1.3.2 Pow temperature					PreShipInspe	ction	4:30	T11.1.3.2 Inspect Coated Rebar Prior To Shipment for coating fract non-painted, or uncoated areas.					
Compressor Temp	171	0.5 (1)	week. Te	mperature p			StockInspect	ion	4:40	areas, greases, excessive damage, etc.					
AlarmSystem 🗹	Checked	for Dry Air		Water Di	scharge [[]	V	Thickness Ga	uge	4:00	T9.1.3.2 Calibrated Coating Thickness Gauge at 7.35 mils SRM				1 mils SKM בנ	302A.

Calibration

Bar Coating Times	Bar Temperatures
-------------------	------------------

Lir e	Test Time	Length M	lotor ipeed	Blast to Coat	Gel	Quench	Ln Rate	l Spr	Lin	е	Hi Temp	Lo Temp	IR Temp	Time A	IR Temp	Time 8	IR Temp	Time C
5-8	4:05	60 38	8 Hz	00:49	:08	00:39	02:19	26 Fj		5	463"	450°	419"	4:10	420°	1:10	¥	
5-8	1:05	60 38	8 Hz	00:49	:08	00:39	02:19	26 Fį		6	463°	450°	416"	4:10	418°	1:10	ų	
										7	463°	450°	421°	4:10	422°	1:10	a	
										8	463°	450°	420°	4:10	420"	1:10	n	

T7. 1.3.2 Gel Time: 7s (min), powder cloud to 1st roller. T7.7.3.2 Quench Time: 28s min, powder cloud to water quench.

T4.1.3.1 3M Infrared Thermometer (IR16), set at .48 emissivity on black bar and averages 449°F. Crayons Melt at 449°F.

PSI, KVs, Application

	Test A	Test	В				Abrasive		Holiday				
							Contaminat		Detectors				
L∷ e -	Time Pressu	re Electro- Spray		Pressure B		Spray Applic		Abrasiv es:	In Line Detecto	Counters In-Line	IL Count Holiday		Time
5	4:15 85 p	i 79 kV 🗸	1:15	85 psi	79 kV	V	\checkmark	Y	~	$ \mathbf{V} $	2	1	6:10
6	4:15 80 p	i 70 kV 🗹	1:15	80 psi	70 kV	\checkmark	V	V	V	V	1	1	6:10
7	4:15 10 p	i 80 kV 🗹	1:15	10 psi	80 kV	✓	V	\mathbf{Z}	V	\checkmark	1	0	6:10
8	4:15 p	i 99 kV ✓	1:15	psi	99 kV	V	✓	$\overline{\mathbf{v}}$	\checkmark	\checkmark	1	1	6:10

T6.3.3.1 Powder Air Supply (Desiccant)

T6.2.3.1 Spray Application/Electrostatic SystemT3.3.3.2 Oil Contamination in Abrasives. T3.3.3.2 Chlorides in Abrasives.

T8.1.1, T8.1.3.1 In-Line Holiday Detectors and Counters Functioning Properly.

T8.1.3.2 Continuity of Coating. Comparison verficiation of holiday detectors.

Bend Test

tine	Angle	Pin Dia	A- . Time		A- Bend Seconds		A- Refest?	A- Passed Retest?	B-Time	B- Bar Temp	B- Bend Seconds	8- Passed	B- Refest?	8- Passed Retest?	C- Time	C- Bar Temp	C- Bend Seconds	C- Passed	C- Retest?	C- Passed Refest?
	5 180	3.5	5:20	76	3	V			9:00	75	3	\checkmark			1:00	76	3	\mathbf{V}		
	6 180	3.5	5:20	76	3	V			9:00	75	3	V			1:00	76	3	∀		
	7 180	3.5	5:20	76	3	\checkmark			9:00	75	3	V			1:00	76	3	\checkmark		
	8 180	3.5	5:20	76	3	V			9:00	75	3	V			1:00	76	3	\checkmark		

No.
608331
31-1A
-2-3

TR

(ì
ì	$\bar{}$	
٠,		٠

2019-04-02

Bar Tests- CS, BC, Chloride subform

	Time				Backs	ide Con	ıtamiı	nation
Line	T1	T2	11	11.3	T1	T2	Т3	T4
1	7:00	11:00			10%	12%	0%	0%
4	7:00	11:00			12%	10%	0%	0%
3	7:00	11:00			10%	10%	0%	0%
2	7:00	11:00			10%	10%	0%	0%
8	6:30	10:30			13%	10%	0%	0%
5	6:30	10:30			10%	10%	0%	0%
6	6:30	10:30			12%	10%	0%	0%
7	6:30	10:30			13%	10%	0%	0%
4					0%	0%	0%	0%
3					0%	0%	0%	0%
2					0%	0%	0%	0%
8					0%	0%	0%	0%
5					0%	0%	0%	0%
6					0%	0%	0%	0%
7					0%	0%	0%	0%
1					0%	0%	0%	0%

T3. L3.2 Backside Contamination, use 3M-471 tape and visual. T3.1.4.2 Blast Cleaning, use surface comparator and SSPC-VIS 1-89

Bar Tests- Copper Sulfate and Chloride

ProfileReadings

Profile Appearance

T T2 T3 T4

5.5 5.5 5.5

5.5 5.5 5.5

5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

5.5 5.5 5.5 5.5

5.5 5.5 5.5

5.5 5.5 5.5 5.5

5.5 5.5 5.5

5.5 5.5 5.5 5.5

5.5 5.5 5.5 5.5

5.5 5.5 5.5

5.5 5.5 5.5 5.5

5.5 5.5 5.5 5.5

5.5 5.5 5.5 5.5

5.5 5.5 5.5 5.5

5.5 5.5 5.5 5.5

Color Appearance

T1

A SP 10

T2

ASP 10 ASP 10 ASP 10 ASP 10

A SP 10 A SP 10 A SP 10 ASP 10 ASP 10 ASP 10

A 5P 10 A SP 10 A SP 10

ASP 10 ASP 10 ASP 10

A SP 10 A SP 10 A SP 10

A SP 10 A SP 10 A SP 10 A SP 10

A SP 10 A SP 10 A SP 10 A SP 10

ASP 10 ASP 10 ASP 10 ASP 10

ASP 10 ASP 10 ASP 10 ASP 10

A SP 10 A SP 10 A SP 10 A SP 10

A SP 10 A SP 10 A SP 10 A SP 10

ASP 10 ASP 10 ASP 10 ASP 10

T3

T4

T3.1.3.2 Copper Sulfate, use visual standard.
T3. L3.2 Chloride Test, use Chloride test strips.

MATERIAL STATEMENT

SUPPLIER:	
-----------	--

Texas Corrugators-Austin Division, Inc.

ADDRESS: 105 Tradesman Park Dr.

Hutto, TX 78634 CONTRACT NUMBER: 512-388-0588

COUNTY:

PROJECT: TTI ALASKA RAIL

CONTROL:

CONTRACTOR: ELLIS MCGINNIS CONSTRUCTION

UNIKACIN	IUMBER: 512-3	88-0588	CONTRACTOR: ELLIS-MCGINNIS CONSTRUCTION						
Purchase Order #	Quantity (Amt/Units)	MATERIAL DESCRIPTION	Mill Name	Heat #	Material Use	Required Specification	Documer HTR	itation Cert	
J-1097	40 L. F.	W8 X 24# BEAM	NUCOR	487304	GALVANIZ ED STEEL	A709-50	Х		
	17.2 SQ. FT.	1" PLATE	ARCELORMITTA L BURNS	174P79150	RAIL.	A709-50	Х		
	17.2 SQ. FT.	3/8" PLATE	NUCOR	B8P3406	GALVANIZ ED STEEL	A709-50	X		
	23.3 L. F.	6" X 4" X ½" RECT. TUBE	SOUTHLAND TUBE	2801948	RAIL	A500-13 B/C	X		
	308.8 L. F.	5" X 7" X 3/8" RECT. TUBE	INDEPENDENCE TUBE	C86773	GALVANIZ ED STEEL	A500 B/C	X		
	10.56 L. F.	И," X 2" FLAT	NUCOR	JW1810748 0	RAIL	A36/A529-50	Х		
								<u> </u>	

This is to certify that the materials listed above and on the attached supplement (if attached) are in conformance with the governing specification(s). This is also to certify that all manufacturing processes for steel and iron materials or for the application of coatings (epoxy, galvanizing, painting or any other coating that protects or enhances the value of the steel or iron material) to these materials occurred in the United States of America. Manufacturing processes are defined as all processes required to change the raw ore or scrap metal into the finished in-place steel or iron product. The attached mill test reports (MTRs) and Certifications (Cert.) are offered as proof of domestic origin. I declare under penalty of perjury under the laws of the United States of America and the State of

	KAREN DUBOSE Notary Public, State of Texas
Subscribed and sworn to before me	引起 202 Comm. Expires 10-04-2021
this 12 hay of Sept 2018	Motary ID 11023605
Notary Public KAKIN DUPOUS	K.
My Commission Expires: 10	20 2)

Texas, that the foregoing is true and correct and that I am a above.	
And the second second	9112/18
Authorized Corporate Official Signature	Date
Ryan J. Cole - Vice President	
Type Name and Title	
Texas Corrugators-Austin Division, Inc.	

(Firm Name)

Involce No. 883011 Bill of Lading 326692 Customer No. 5000				ATO ST ville, ar i	EEL. CC		All Shap	Moliad es produ id line go	and More than the second secon	lucor•Ya	tured i mato Si	n U.S eel are	S.A e cast a			- 1					,					Cust PO - M-9195	07-26-2018 07:01 Texas Corrugators, I
KLOECKNER METALS CORPOR STO COLONIAL CENTER PKWY STE 500 ROSWELL GA 30076 USA		N .		5 H c d	KLOECHN SOUTH L BUDA TX USA	0QP4				***************************************		A.	20A VII 20A MIZ 20A VII 20A VIIZ	93/AJC 19/AJC 21-23 S	IM-15 (IV:-15 (IVIII-15	R50 (3 R505 (45 3455)	RSO-15								Ambientessen essen all (en 1991 es en 1997) es en 1997	inc Load -
	T		<u></u>	1	1	nical Proj		lengage			1					Checui	al Prop	erties						-			310
तन्त्रं (tem Gescription	αn	Heati	Yield to Tersile Ratio	HHI Secreta	Tentin Securch	ELONG %	= =	lmpace E fr•1		E C	şζn	Р	5	.Şi	Ċī	Жi	Ċŗ	Mo	٧	СЬ	EE	5n	Pem	Cī		-	3104025
W03X924,0 50 ft 016 W200X35.9	5	483621	0.79 0.78	56 56 56 385 389	##Po 71 72 492 498	26 25	, ξ	,		07	1.01	_017	.077	_2:t	.35	11.	EQ.	ʻlx	.00	.914	29	.01	.1\$			Princip Ballingson	
(15.24m) W03X024.0 40 h 0 ln W2U0X35.9 1 12.19m)	2	487120	0.77 9.77	55 54 378 375	71 71 488 490	26 25				.07	.FU	.037	,020	.23	.27	.12	£1.	.04	,D2)	.016	.78	.01	.15			Order-Line	w
(17.3916, W33X024.0 40 ft 03a W230X35.9 (12.19 m)	В	49730¢	0.79 0.80	58 59 402 403	74 73 507 504	25 24				.07	.52	.023	.030	.23	.27	.12	.15	.03	.00.	.015	29	.01	.15			1 1	۲ ، عو
W09X028.0 50 ft 04a W200X41.7 [15.244a]	2	467129	0.79 0.77	54 53 371 369	59 50 473 469	76 26				.07	.51	.911	.026	.20	.25	.32	.12	.65	.63	.OL7	.28	-01	.14			16359482/3	3847189 Heat - 4
ONIGATION BASED ON 8.00 INCH THE C-51/30-MM/204 Ctr/20411/6 prosion Index= 26.01(p5Cc)+3.88 10(XMI(XP)-33.30/RCu)+2 0 9001:2035 certified (Registration Il mechanizal Lesting to performace the Charpy machine striker geome	O+Cr/i (XNI)+ on IfO! d by to	2014/o/15+ +1.2(RG)+1 185-07}, e Quality fi	V/10>59 L49(%S/) esting tal	+17.28(%P) b, which is i	7.29(%Cu)(ndependen	t of the p	nocuctio	Merc Tist i ndeparti	OH EQUIV dry has no noterial w ments. AS 70 Sec	ias produ or been u	sed in di ced in ad	e direc contar	t manut see with	acturie (lee Alu	g of this	maler		ility kto	nvol								487304
hereby certify that the contents of orrect. All test results and operational nanulocturer are in complainte we altered specifications, and when to over the applicable specifications.	ef titls . ions pe ith the design	report are a riomec by requireme	occutate othernal of the	er,	ef Metallu	-fam				State o County Sworn	i Arkansa al Musi te and st	is silppi ibieritii	ed befor	e 1170 [*. ([]											·	Property of the Control of the Contr	

BLR466

QUALITY ABSURANCE REPORT OF TEST AND ANAYLSES DATE SHEPPED HAMM CUSTOMER TRUCK 02-28-18 BGA-10412 THICKNESS POUNDS PSI PSI INCHES INCHES INCHES QUALITY STREE MELTED & MANUFACTURED IN THE U. S. A. PLATES - AASETO M270-15 GR 50 KLD FINE GRAIN 5 / 10 / 2018 **SFI-GRAY STEEL** PRAC NO IMPACTS REQUIRED TYPE 2, Customer Names ASTM A709-13A GR 50, ASTM A572-06 GR 50, ASME SA572 GR 50 2013 Customer PO #: SFI PO #: 703271 Thickness: PO#:J-1097-1 - P/N: EDITION Heat & Slab: 174P79150 MPST - MPST MILL SERIAL# & PATTERN# MFST PROC ON 55690-3 GH820-1183A LIFT MAX 15 TON-SIZES & GRADES SEP UNLDG FORK LIFT-SIDE FOR ULTIMATE DELIVERY LATER GH 405-1212A CO# 23.579 84000 8 25 52600 240 6534 174P79150 1 1 96 83800 2 30 60500 -(SNI H54842801 84000 8 25 83800 2 30 52600 5534 240 174P79150 1 1 96 60500 H54842802 6534 52600 84000 8 240 2 174P79150 1 1 60500 83800 2 30 H54842803 CORRUGATORS N-NORMALIZE TEXPERATURE T-TEMPER TEMPERATURE SERIAL NUMBER TEXAS BEND INCHES - Customer: /2018 CHEMICAL ANALYSIS Cu. NI Cr Mo V TI AI HEAT NUMBER Ma S. SI . 8/2/ 174279150 .18 1.23 .015 .003 .295.025 .02 .03.006.056.003.028.0003 .002.005.002 Date: STEEL I carefy that the above results are a true and correct copy of actual results contained in records maintained by Arcticifulful Burne Hurber and are in full compliance with the religious results are a true and correct correct period of the specification cloud above. This lest report connot be altered and must be transmitted brack with any subsquant third party test reports. If recorded, ANDREW SMITH SUFV. QUALITY ASSURANCE

SHPLIRPT TE

SFI

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HENVITT

Quality Assurance Manager

1		·		T
S	CMC COATING WAXAHACHIE	S	CMC Coatings Waxahachie	Delivery#: 82415821
0		Н		BOL#: 72520539
L	901 CANTRELL STREET	1	901 Cantrell St	CUST PO#:
D	WAXAHACHIE TX	P	Waxahachie TX	CUST P/N:
	US 75165-3120		US 75165-3120	DLVRY LBS / HEAT: 45060.000 LB
T	972-937-9841	T	972 937 9841	DLVRY PCS / HEAT: 720 EA
0		0		
	O L D	L 901 CANTRELL STREET D WAXAHACHIE TX US 75165-3120 T 972-937-9841	O	O

Characteristic	Value	Characteristic Value	Characteristic Value
С	0.42%		
Mn	0.75%		
P	0.012%		
S	0.053%		
Si	0.18%		•
Cu	0.31%		
Cr	0.16%		
Ni	0.17%		
Mo	0.079%		
V	0.000%		
Сь	0.001%		
Sn	0.012%		The Following is true of the material represented by this MTR:
Al	0.002%		*Malerial is fully killed
Yield Strength test 1	67.9ksi		*100% melled and rolled in the USA
Tensile Strength test 1	103.4ksi		*EN10204:2004 3.1 compliant
Elongation test 1	16%		*Contains no weld repair
Elongation Gage Lgth test 1	8IN		*Contains no Mercury contamination
Bend Test Diameter	2.188IN		*Manufactured in accordance with the latest version
Bend Test 1	Passed		of the plant quality manual
			"Meets the "Buy America" requirements of 23 CFR635 410

EMARKS:

07-26-2018 07:01

Load - 3104025

BL - 3847189

BLR466

Texas Corrugators, Inc Cust PO - M-9195

Heat - 2801948 Order-Line - 16359482 / 6

3525 Richard Arrington, Jr., Bwd, N, Birmingham, Alabama 35234 Phone: (205) 251-1884 Lab Fax (205) 421-4561 Lab@SouthlandTube.com

TEST REPORT											
Customer Name:	KLOECKN	ER METALS CORPO	RATION	and in the first of the second	of the same received and substitute to be processed.						
Customer PO No.:	7257246		Cust	omer Part No: T6412R	ECTA5000576						
Spec/Grade: A50	00-13 Grade B/C			Heat No.:	2801948						
Description: CA	RBON STEEL T	UBING		Print Date:	3/27/2018						
Sîze/Length: 6"	Nominal Thickness:	0.500									
Carbon (C):	0.2200	Tin (Sn):	0.0050	Vanadium (V):	0.0050						
Manganese (Mn):	0.8200	Nickel (Ni);	0.0300	Golumbium (Cb):	0.0000						
Phosphorus (P):	0.0070	Chromium (Cr):	0.0300	Titanium (Ti):	0.0010						
Sulphur (S):	0.0020	Molybdenum (Mo):	0.0100	Boron (B):	0.0000						
Silicon (Si):	0.0200	Aluminum (Al):	0.0240	Calcium (Ca):	0.0020						
Copper (Cu):	0.1000	Nitrogen (N):	0.0050	Carbon Equiv. (CE):	0.3743						

Sample	Sample	Tensile	Yield	트ongation
Number	Date	(psil	(pai)	(%)
SL61201	3/9/2018	81,700	68,700	35,63

We hereby certify that the above figures are correct as contained in the records of this company. Testing, where it is performed, is performed according to applicable standards (Yield Strength determined using 0.2% offset method and Elongation is measured over a 2" gauge length). Finished goods that require destructive testing by either flattening or flaring to meet the requirements of the standard to which they are certified have been destructively tested in accordance with the pertinent standard. Further, this certification is compliant with the EN10204:2004 Standard for Type 3.1 Inspection Documents.

Ron Lowery

Laboratory Manager Southland Tube Incorporated

Melted & Manufactured in the U.S.A.

STI Pickup No.: 03LB266

STI Order No.: 00462830

STI Item No.: 4.0X6.050048

Hamasco

08-09-2018 00:00 Load - 3114657 Texas Corrugators, Inc	BL - 3847917 Heat - C86773	BLR466
Cust. PO - M-9195	Order-Line - 16359482 / 4	
Independence Tube a स्थल्या Company	6226 (Y. 74th St. Chicago, IL 60638 708-496-0380 Fax: 708-563-1950	www.Independencetube.com itctube.com Certificate Number: CHI 839719

Sold By: INDEPENDENCE TUBE CORPORATION 6226 W. 74th St. Chicago, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950

Sold To: 1187 - KLOECKNER METALS CORP- HO/BU 500 COLONIAL PARKWAY

SUITE 500 ROSWELL, GA 30076 Purchase Order No: 7297731 Sales Order No: CHI 285183 - 1 Bill of Lading No: CHI 179642 - 2

Shipped: 8/3/2018 Involced:

Ship To: 2 - KLOECKNER METALS CORP BUDA 2560 SOUTH LOOP 4 BUDA, TX 78610

CERTIFICATE of ANALYSIS and TESTS

Customer Part No: 7" X 5" X 3/8" X 21

TUBING A500 GRADE B(C)

Certificate No: CHI 839719 Test Date: 8/2/2018

Total Pieces Total Weight 9,234

Bundle Tag Mill Y/T Fatio Pleces Weight Specs YLD=64531/TEN=58326/ELG=32.79 Heat C86773 23155 13N 0.9445 4,040 23154 YLD=64531/TEN=68326/ELG=32.79 5,194 13N 0.9445 C86773

Mill #: 13N Heat #: 086773 Carbon Eq: 0.1625 Heat Sto Origin: MELTED AND MANUFACTURED IN THE USA

	C	Mn	P	\$	Si	Al	Cu	Çĭ	Ma	V	N;	Nb	Sn
	0.0600	0.4100	0E00.0	0.0030	0.0300	0.0310	0.1300	0.0800	0.0200	0.0010	0.0800	0.0140	0.0050
i	Vi		77										
	0.0063	0.0001	0.0020	0.0022									

LEED Information (based on the most recent LEED information from the producing mill)

Method	Location	Recycled Content	Post Consumer	Post Industrial
	Ghent, KY	66.9%	28.2%	38.8%

T/R FAX

I certify that the above results are a true and correct copy of records prepared and maintained by independence Tube Corporation. Sworn this day, 8/2/2018

WE PROUDLY MANUFACTURE ALL OUR PRODUCT IN THE USA, INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS. MATERIAL IDENTIFIED AS A500 GRADE B(C) MEETS BOTH ASTM A500 GRADE B AND A500 GRADE C SPECIFICATIONS.

CURRENT STANDARDS: A252-10 A500/A500M-18 A513/A513M-15 ASTM A53/A53M-12 | ASME SA-53/SA-53M-13 AB47/AB47M-14 A1085/A1085M-16

Chris Allen, ASQ CMQ/OE Quality Systems Supervisor

Page - 1

Namasco

09-06-2018 04:00

Load - 3134241

BL - 3849492

BLR466

Texas Corrugators, Inc.

Heat - JW18107480

Cust PO - A-7426

Order-Line - 16409366 / 2

PLIEUR NUCOR CORPORATION Mill Certification 8/15/2018

NUCOR STEEL TEXAS

KLOECKNER METALS CORP 500 COLONIAL CTR PKWY STE 500 ROSWELL GA 90076 (678) 259-8617 Fex: (678) 259-8894

Ship To: KLOECKNER METALS

Customer P.O.	7297946	Sales Order	278262.18
Product Group	Merchant Bar Quality	Part Number	5325020024004W0
Grade	A36/A529GR50/CSA44W/50W	Lot#	JW1810748001
Size	1/4x2° Flat	Heat#	JW18107480
Product	1/4x2" Flat 20' A3G/A529-50/44W/50W	B.L., Number	J1+833419
Description	A36/A529-50/44W/50W	Load Number	J1-423064
Customer Spec		Cuslomer Parl #	MBT42FL IMA360240

Hereby entity that the material described beach read beach manufactural in accordance with the acceptations and standard labor allows and that it satisfies move requirements.

Roll Date: 8/14/2018 Melt Date: 8/11/2018 Oty Shipped LBS: 5,103 Oty Shipped Pcs: 150

0.025%

ASTM AS\$/AS\$M-12, A709/709M-19 GRS6, ASME SA96-10 Ed '11 Ad. ASME SA96-2010 EDITION-2011 ADDENDA ASTM A709/A709M-18 GR 36 (250)

0.011%

0.18%

Elongation: 26% in 8"(% in 203.3mm)

0.0302%

Cb

0.002%

Yield 1: 57,400psi Yield 2: 57,100psi

0.14%

Tensile 1: 75,600psi Tensile 2: 74,900psi

Cu

0.28%

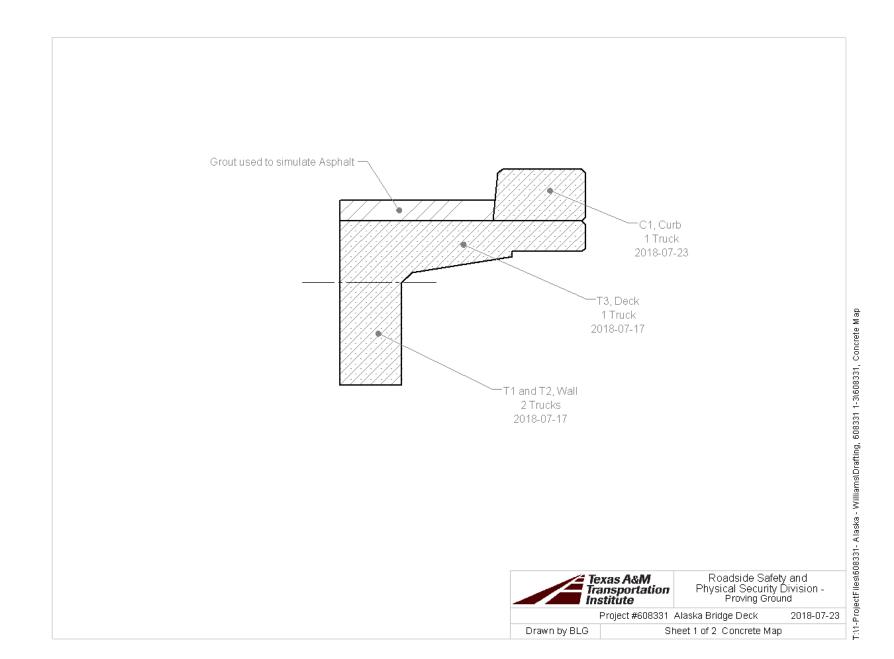
Elongation 27% in 8"(% in 203.3mm)

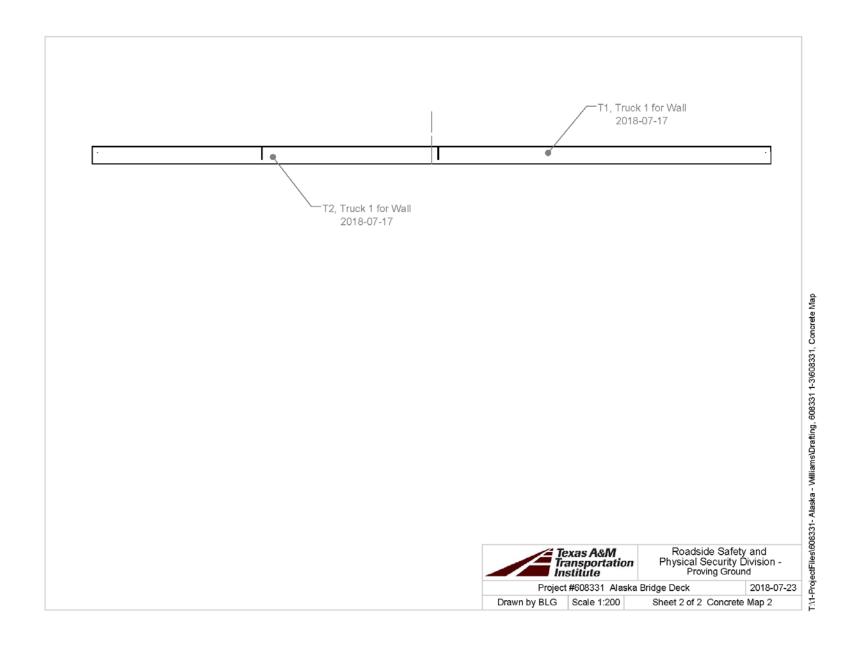
Spacification Comments: MEETS THE REQUIREMENTS OF: ASTM A36/A36M-14, A529/A525-05 GR50(345), A709/A709M-10 GR36(250); CSA
G40.21-04 GR44W(300W)&GR50W(350W); AASHTO M270/270M-10 GR36(270); AGME SA36/SA36M-10 MEETS REPORTING REQUIREMENTS OF EN10204 SEC

0,17%

0.17%

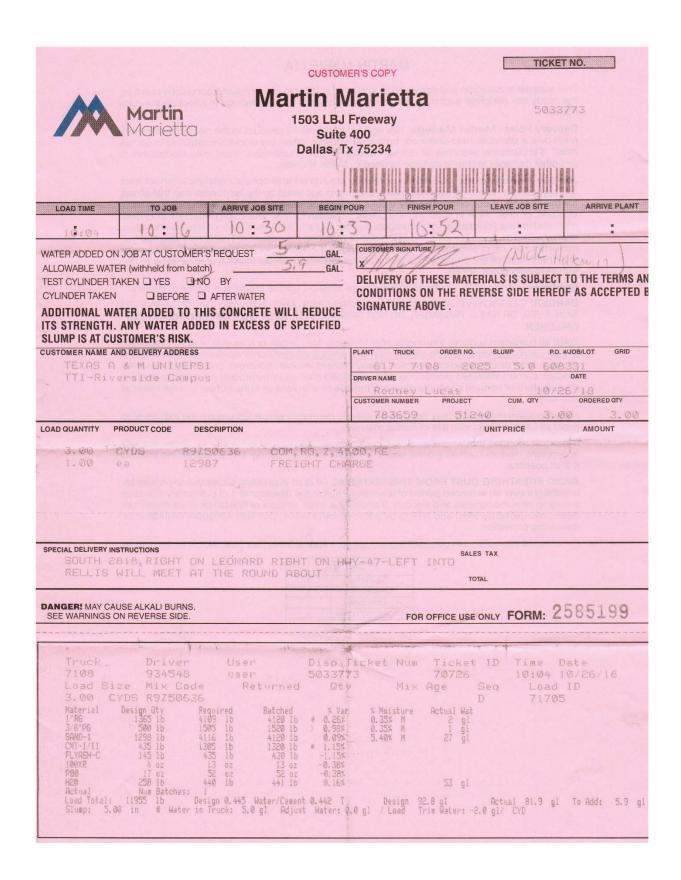
0.067%

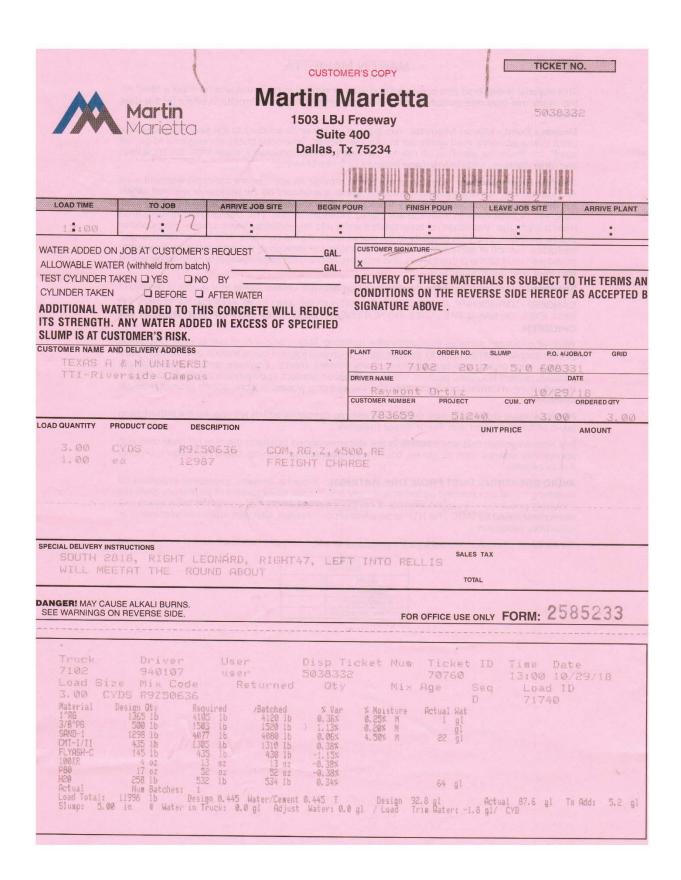

Commonts: E mail: wobsolos@nstoxas.com


All manufacturing processes of the steel, including melting, casting & hot rolling, have been porformed in U.S.A
 Morcury in any form has not been used in the production or resting of this product.
 Welting or weld repair was not performed on this material.
 This material conforms to the specifications described on this document and may not be reproduced, except in full, without written approval of Nucor Corporation
 Results reported for ASTM E43 (inclusion content) and ASTM E381 (Macro-etch) are provided as interpretation of ASTM procedures.

Bhargave R Venteri Division Metallurgist

Page 4 of 5


NBMG-10 October 1, 2017



Proving-Ground¶ 3100:SH-47: Bide:7 Bryan: TX: 77807	Texas A&M Transportati Institute Texas A&M-University¶ (091¶ College-Station, TX-7784 Phone-979-845-8375¶	ion QF.7	7.3-01 ··Concre Sampling¤	DocNo.¶ ¶ QF-7.3-01	Issue Date:		
• Qu	nality Formo		Wanda L. Menges¶ : Darrell L. Kuhn≃	Revision:	Revision: Page: 1		
Project No	608331 -		2018-10-26	Mix Design (psi):	4500		
lame of Technicia Taking Sampl	in GREG 7	FRITZ	Name of Technician Breaking Sample		Pii/		
Signature of Technicia Taking Sampl	in A	the	Signature of Technician Breaking Sample	-	-		
Load No.	Truck No.	Ticket No.	Locat	tion (from concrete	map)		
TI	7108	5033773	New Sec	tion of Dec	6		
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average		
T/	3012 R.10	44 days	167000	5900	1		
71			157500	5570	5670		
7/			157000	5550	1		
					To all		
					*		

Proving-Ground¶ 3100 SH-47, Bldg,7 Bryan, TX 77807	Texas A&M Transportati Institute Texas A&M University College-Station.:TX-7784 Phone-979-845-6375	£	.3-01··Concret Sampling¤	Doc. No.¶ ¶ QF-7.3-010	Issue Date 2018-06-1
- Qu	nality · Forma	Prepared by:	Wanda L. Menges¶ Darrell L. Kuhn=	Revision:	Page:¶
Project No	: 601331	Casting Date:	2018-10-29	Mix Design (psi):	4500
ame of Technicia Taking Sampl		FRIFT	Name of Technician Breaking Sample		Fr. Aixl
Signature o Technicia Taking Sampl	n d	En	Signature of Technician Breaking Sample		-
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	map)
	Q 13	508 2018-0-29			
T/	7102	5038332	Curb for	Repkument	areas
Load No.	Break Date	Culinday Ass	Total Load (lbs)	Bungh (mai)	Avorag
T/	2018-12-10	Cylinder Age	Total Load (lbs)	Break (psi)	Averag
71	1	1 days	150,000	5300	5060
7/			146,500	5180	1
		- Harris -			

This page intentionally left blank.

APPENIDX C. MASH TEST 4-12 (CRASH TEST NO. 608331-01-1A)

C1 VEHICLE PROPERTIES AND INFORMATION

Table C.1. Vehicle Properties for Test No. 608331-01-1A.

Da	ate: 2018-12-	10 Test N	lo.:	608331-01-1	Α	VIN No.:	1H9MMAANOE	J440340
Υe	ear:2011	Ma	ke:	Internationa	nl	Model:	4300	
0	dometer:1011	36 Tire S	ze F	ront:275/80	R22.5	_ Tire Siz	ze Rear:275/8	30R22.5
X	T N N N N N N N N N N N N N N N N N N N	B J J		Z R) 	BB K	L CC
Vel A B	nicle Geometry: [Front Bumper Width: Overall Height:	✓ inches or 95.00	K L	mm Rear Bumper Bottom: Rear Frame Top:	37.	U 00 V	Cab Length: Trailer/Box Length:	106.00
С	Overall Length:		M I	Front Track Width:	80.		Gap Width:	1.75
D	Rear Overhang:	86.50	N I	Roof Width:	71.		Height:	98.50
Е	Wheel Base:			Hood Height:	59.		Roof-Hood Distance:	30.00
F	Front Overhang:	36.00	-	Bumper Extension:	1.	<u>00</u> Z	Roof-Box Height Difference:	34.00
G	C.G. Height:		1	Front Tire Width:	39.		Rear Track Width:	73.00
Н	C.G. Horizontal Dist. w/Ballast:	125.35	1	Front Wheel Width:	23.		Ballast Center of Mass:	61.25
I	Front Bumper Bottom:	19.00		Bottom Door Height:	37.	50 50	Cargo Bed Height:	48.25
J	Front Bumper Top:	34.00	Т (Overall Width:	96.	00		
	Allowable Range:	C = 394 inches ma	k.; E:	= 240 inches max.; CC	= 51 ±2 in	ches; BB = 6	3 ±2 inches above ground	;
	Wheel Center Height Front Wheel Center	19.00	C	Wheel Well Clearance (Front) Wheel Well		9.00	Bottom Frame Height (Front)	25.50
\	Height Rear	19.00	(Clearance (Rear)		3.50	Bottom Frame Height (Rear)	27.00

Table C.1. Vehicle Properties for Test No. 608331-1A (Continued).

Date:	2018-1	2-10	Test No.:	608	331-01	I-1A	VIN N	lo.:	1H9MMAANOBJ44		J440340
Year:	201	1	Make:International		nal	Mode	l:	4300			
	_	EIGHTS ✓ Ib or [CURB	7280		TESTII	NERTIAL 8550		
			ont axle			6720	-		13500		
			ear axle			14000	-		22050		
			/ _{TOTAL} tange for CURB =	13,200 ±22			ange for 1	TM = 22,04			
E	Ballast: 80	50	(√lb or]kg)	(as-nee (See MA		ion 4.2.1.	2 for recomm	ended l	ballasting)
	istribution r	LF:	4260	RF:	4290		LR:	7080	R	R: <u>6</u>	420
Engine ⁻ Engine ⁽		XX FOR 466	CE DIESEL	-	А	ccelero	meter L x 1	ocations	s (🔽 inches y	s or [mm) z²
	ission Type Auto o		M anual			Front: .	12	 5.35	0.00		48.00
		RWD	4WD			Rear:	22	5.35	0.00	_	48.00
Describe	e any dama	age to the	e vehicle prio	r to test:							
attachm	nent:		llast type, di					enter o	f mass, and	d metl	hod of
			s / Width 60 ir s / Width 60 ir		<u> </u>						
	s centered			iches / L	_engui	30 111011					
			ad to ground								
	5/16-inch c		-								
Perforn		SCD						Date:	201	18-12- ⁻	10

Referenced to the front axle Above ground

C2 SEQUENTIAL PHOTOGRAPHS

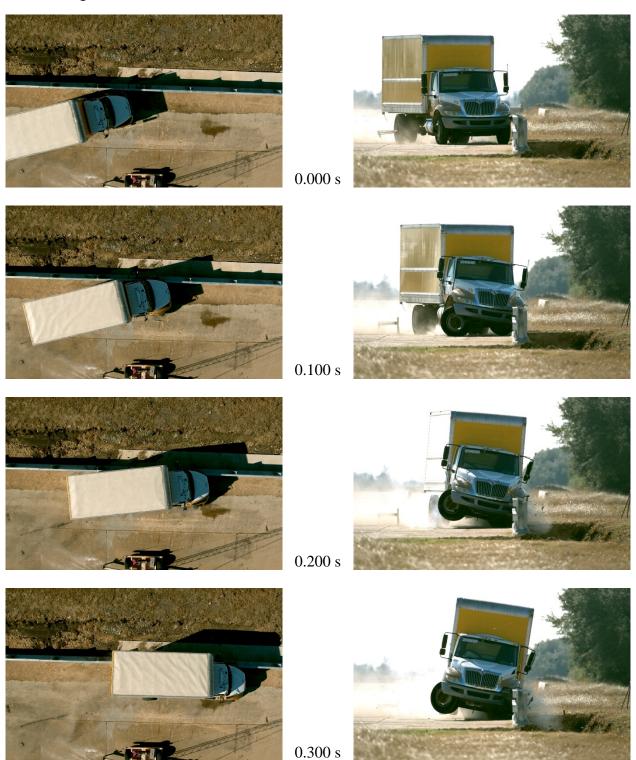


Figure C.1. Sequential Photographs for Test No. 608331-01-1A (Overhead and Frontal Views).

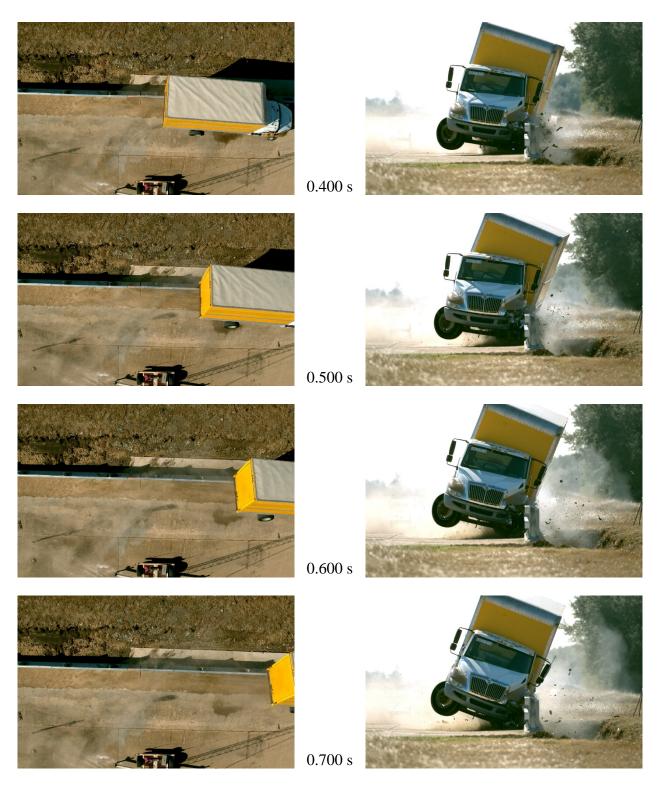


Figure C.1. Sequential Photographs for Test No. 608331-01-1A (Overhead and Frontal Views) (Continued).

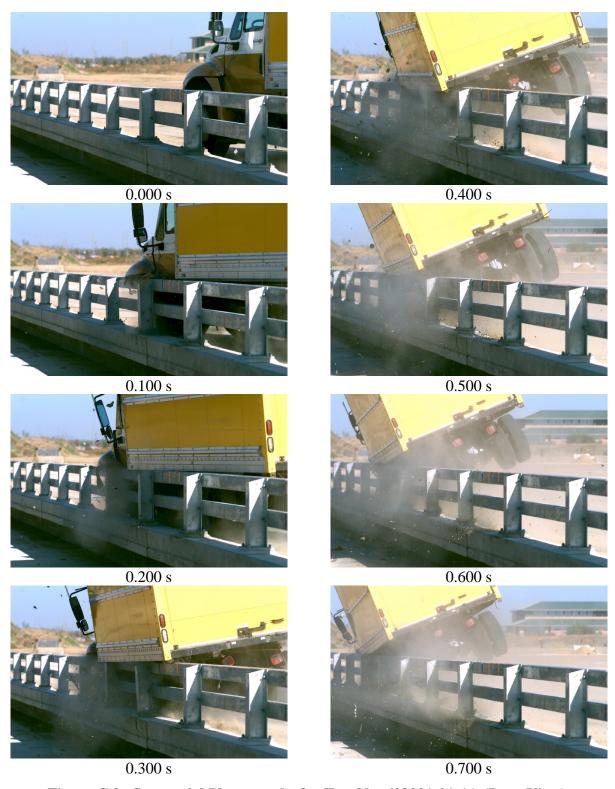


Figure C.2. Sequential Photographs for Test No. 608331-01-1A (Rear View).

VEHICLE ANGULAR DISPLACEMENTS

Figure C.3. Vehicle Angular Displacements for Test No. 608331-01-1A.

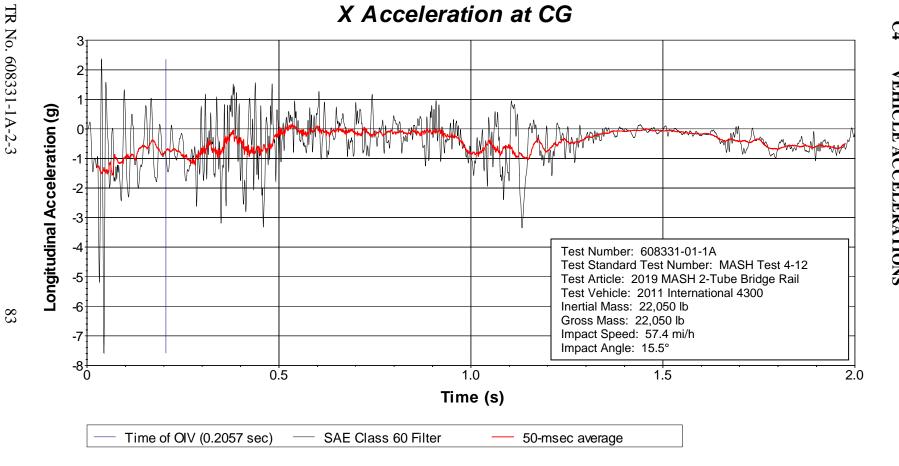


Figure C.4. Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-1A (Accelerometer Located at Center of Gravity).

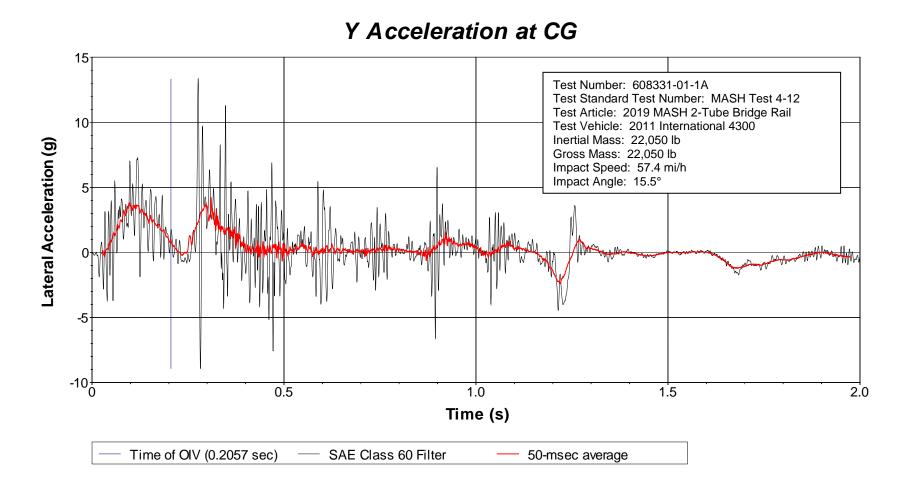


Figure C.5. Vehicle Lateral Accelerometer Trace for Test No. 608331-01-1A (Accelerometer Located at Center of Gravity).

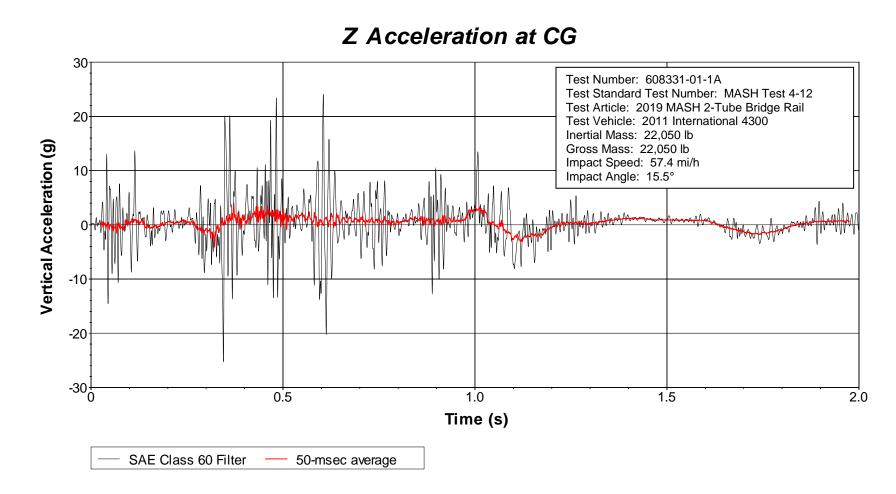


Figure C.6. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-1A (Accelerometer Located at Center of Gravity).

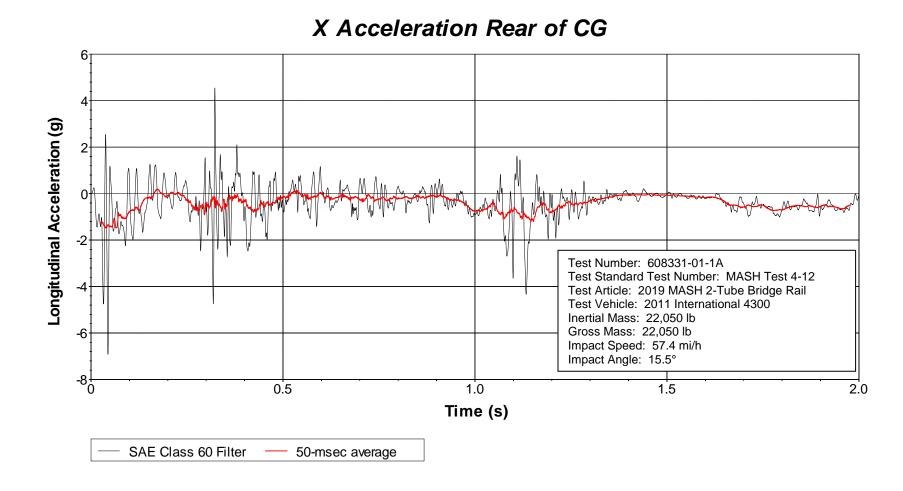


Figure C.7. Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-1A (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

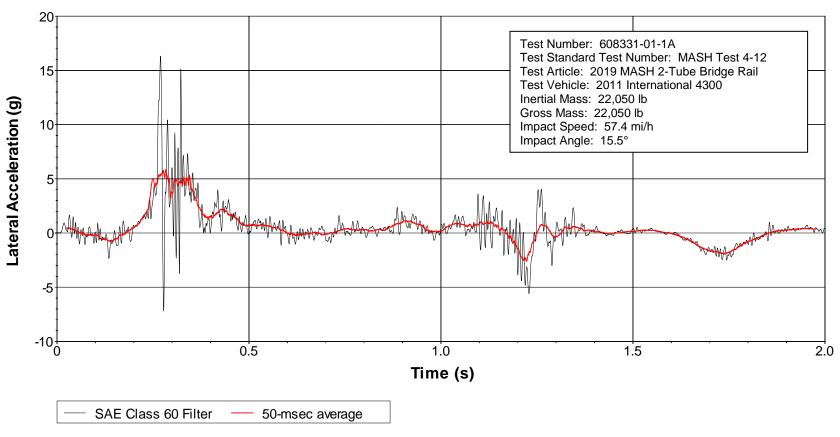


Figure C.8. Vehicle Lateral Accelerometer Trace for Test No. 608331-01-1A (Accelerometer Located Rear of Center of Gravity).

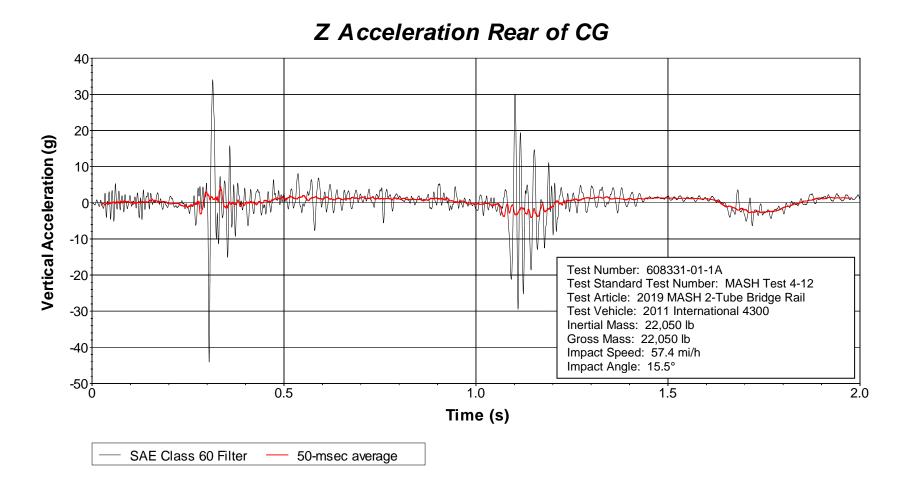


Figure C.9. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-1A (Accelerometer Located Rear of Center of Gravity).

APPENIDX D. MASH TEST 4-11 (CRASH TEST NO. 608331-01-2)

D1 VEHICLE PROPERTIES AND INFORMATION

Table D.1. Vehicle Properties for Test No. 608331-01-2.

Date:	2018-12-1	2	Test No.:	608331-	01-2	VIN No.	1C6RD	6FT5CS	132574
Year:	2012		Make:	RAN	1	_ Model		1500	
Tire Siz	ze: <u>265/70</u>	R 17			Tire	Inflation Pre	essure:	35	psi
Tread ⁻	Type: <u>Highwa</u>	ıy				Odo	meter: <u>1683</u>	53	
Note a	ny damage to tl	he vehic	ele prior to t	est: None					
• Den	otes accelerom	eter loca	ation.	0gn	•	X	-		
NOTES	S: None			. 1		711			1
Engine Engine		iter		A M WHEEL TRACK					N T
Transn	nission Type: Auto or FWD F	 RWD	Manual		R -	*	TEST	INERTIAL C. M.	-
Option:	al Equipment: e			P				<u> </u>	
Type: Mass	: <u> </u>	165	tile Male Ib	1-1 I-1	F F	U H	V Ls	_ D-	→ K L
Seat	Position: <u>Drive</u>	er Side				M FRONT	- E	V M	
Geome	-	_	40.00		4	5 86. 1.60 to 11.00	-c-	100-000	07.75
<u> </u>	78.50 74.00	F —	40.00 29.00	. K —	20.00	- P -	3.00	U.	27.75 30.50
в С	227.50	G — Н	62.60	. L M	68.50	_ Q _ R	18.00	V.	62.60
о О	44.00	'' —	11.75	- 'V' N	68.00	- '` - S	13.00	ν. Χ	78.00
- — E	140.50	. — J	27.00	· · · —	46.00	 T	77.00		
	neel Center leight Front	14	.75 Cle	Wheel Well arance (Front)		6.00	Bottom Fram Height - Fro		12.50
	neel Center Height Rear	14	.75 Cle	Wheel Well earance (Rear)		9.25	Bottom Fram Height - Re		22.50
	LIMIT: A=78 ±2 inches; (C=237 ±13 in							
GVVVR Front	Ratings: 3700		Mass: Ib	<u>Curb</u>	<u>2</u> 2869	<u> 1 est</u>	<u>Inertial</u> 2782	Gros	ss Static 2867
Back	3900	-	M _{rear}		2033		2237	-	2317
Total	6700	_	M _{Total}		902		5019		5184
Mass I	Distribution:					Range for TIM and	GSM = 5000 lb ±110	lb)	
lb		LF: _	1396	. RF:	1386	LR:	1132	RR:	1105

Table D.2. Measurements of Vehicle Vertical CG for Test No. 608331-01-2.

Date:201	8-12-12	_ T	est No.: _	608331-	<u>331-01-2 </u>		1C6RD6FT5CS132574			
Year:2	.012		Make: _	RAM	1	Model:		15	500	
Body Style:	Quad C	ab				Mileage:		168353		
Engine: <u>4.7</u>	liter	١	/-8		Trans	smission:	Auto	matic		
Fuel Level:	Empty		Ball	last: _209					(440) lb max)
Tire Pressure	e: Fron	t: <u>3</u>	<u>5</u> ps	i Rea	ır: <u>35</u>	psi S	ize:	265/70 R 1	17	
Measured V	ehicle '	Weig	ghts: (II	b)						
LI	=: 139	96		RF:	1386		F	ront Axle:	2782	
LF	R: 113	32		RR:	1105			Rear Axle:	2237	
Let	t: 252	28		Right:	2491			Total:	5019	
								5000 ±1	10 lb allowed	
V	_ Vheel B	ase:	140.50	inches	Track: F:	68.50	incl	nes R:	68.00	inches
	148 ±13	2 inche	es allowed			Track = (F+R)/2 =	67 ±1.5 inches	allowed	
Center of G	avity, :	SAE	J874 Sus _l	pension M	ethod					
	K : 62	2.62	inches	Rear of F	ront Axle	(63 ±4 inches	allov	ved)		
`	/ : -(0.25	inches	Left -	Right +	of Vehicle	Ce	nterline		
	z : 29	9.00	inches	Above Gr	ound	(minumum 28	3.0 ind	hes allowed)		
Hood He	eight: _		46.00	inches	Front	Bumper H	eigh	t:	27.00 i	nches
	4	13 ±4 ir	nches allowed							
Front Overhang:			40.00	inches	Rear	Bumper H	eigh	t:	30.00 i	nches
	3	89 ±3 ir	nches allowed							
Overall Le	ngth: _		227.50	inches						
	2	237 ±13	3 inches allow	ed						

Table D.3. Exterior Crush Measurements for Test No. 608331-01-2.

Date:	2018-12-12	Test No.:	608331-01-2	VIN No.:	1C6RD6F15CS132574
Year:	2012	_ Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable								
End Damage	Side Damage							
Undeformed end width	Bowing: B1 X1							
Corner shift: A1	B2 X2							
A2								
End shift at frame (CDC)	Bowing constant							
(check one)	X1+X2							
< 4 inches								
≥ 4 inches								

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

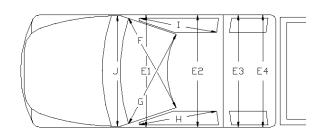
g:g-		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	AT FT BUMPER	19	8	20	8	4	2				-27
2	ABOVE FT BUMPER	19	11	60	1	2	4	6	9	11	+75
	Measurements recorded										
	✓ inches or ☐ mm										

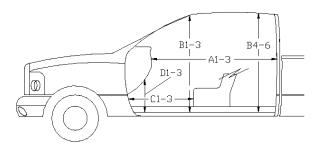
¹Table taken from National Accident Sampling System (NASS).

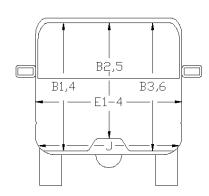
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.


Table D.4. Occupant Compartment Measurements for Test No. 608331-01-2.

 Date:
 2018-12-12
 Test No.:
 608331-01-2
 VIN No.:
 1C6RD6FT5CS132574

 Year:
 2012
 Make:
 RAM
 Model:
 1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After (inches)	Differ.
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
В3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	25.50	-0.50
C2	0.00	0.00	0.00
С3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	58.50	0.00
E2	63.50	63.50	0.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
1	37.50	37.50	0.00
J*	25.00	24.75	-0.25

D2 SEQUENTIAL PHOTOGRAPHS

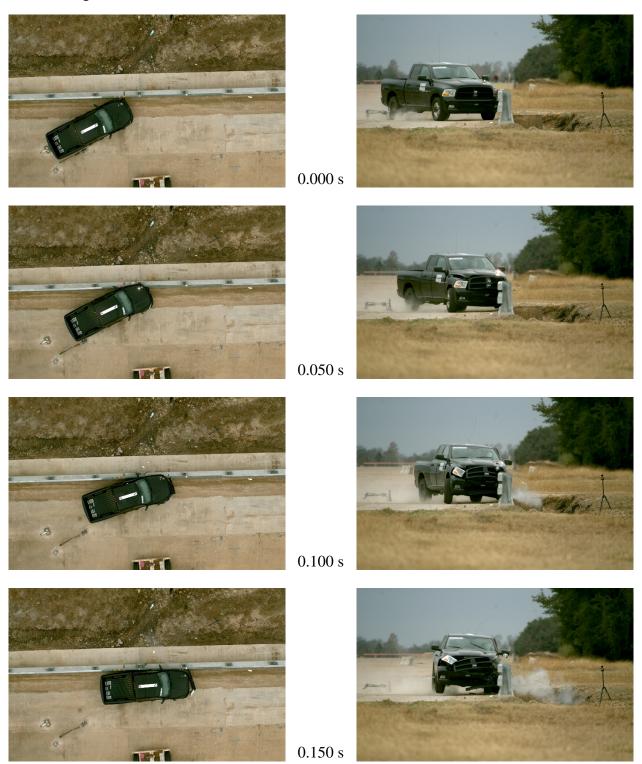


Figure D.1. Sequential Photographs for Test No. 608331-01-2 (Overhead and Frontal Views).

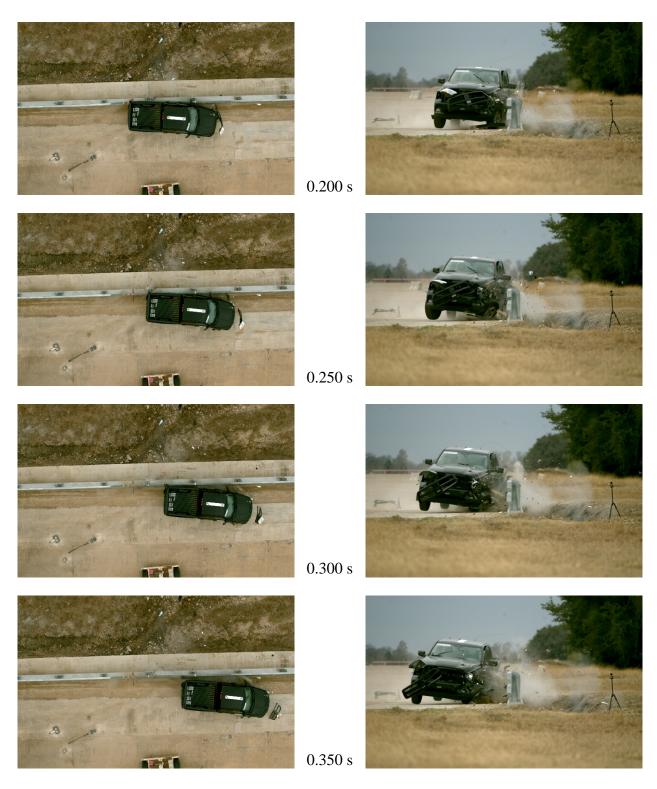


Figure C.1. Sequential Photographs for Test No. 608331-01-2 (Overhead and Frontal Views) (Continued).

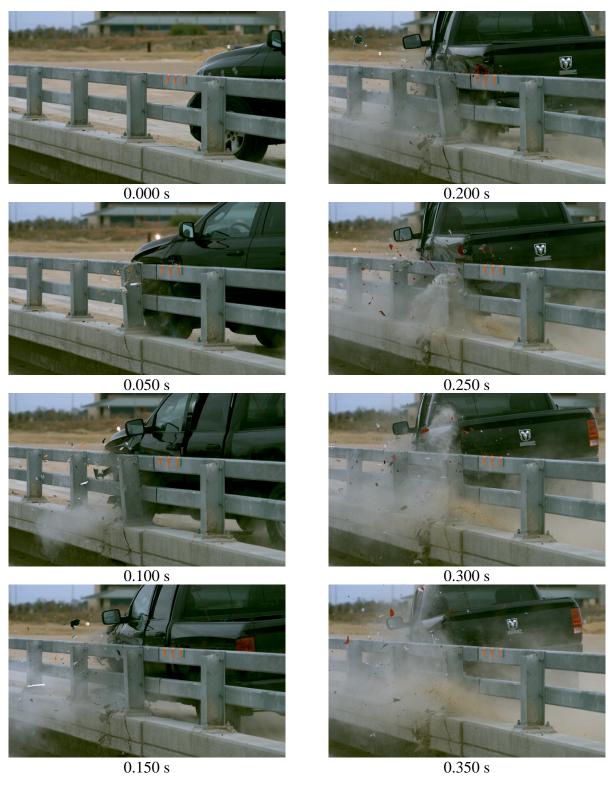


Figure D.2. Sequential Photographs for Test No. 608331-01-2 (Rear View).

Figure D.3. Vehicle Angular Displacements for Test No. 608331-01-2.

Yaw. 1. 2.

3. Roll.

Pitch.

Time (s)

D4

VEHICLE ACCELERATIONS

1.6

1.4

Y Acceleration at CG

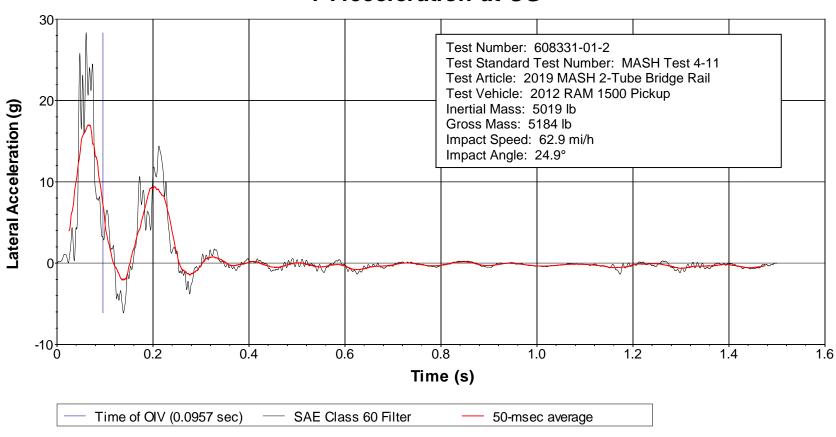


Figure D.5. Vehicle Lateral Accelerometer Trace for Test No. 608331-01-2 (Accelerometer Located at Center of Gravity).

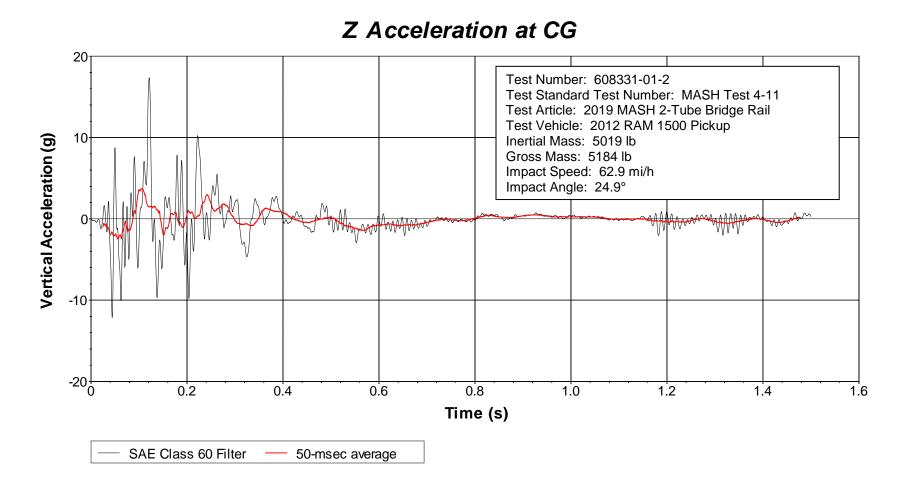


Figure D.6. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-2 (Accelerometer Located at Center of Gravity).

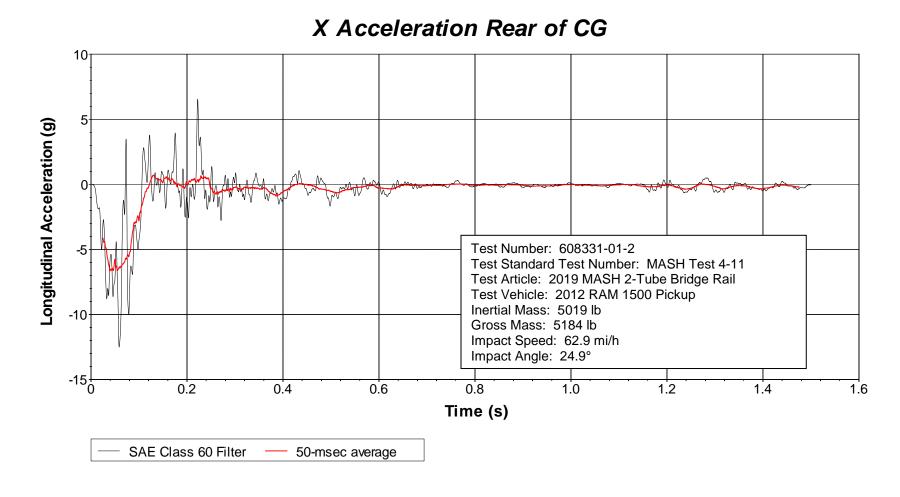


Figure D.7. Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-2 (Accelerometer Located Rear of Center of Gravity).

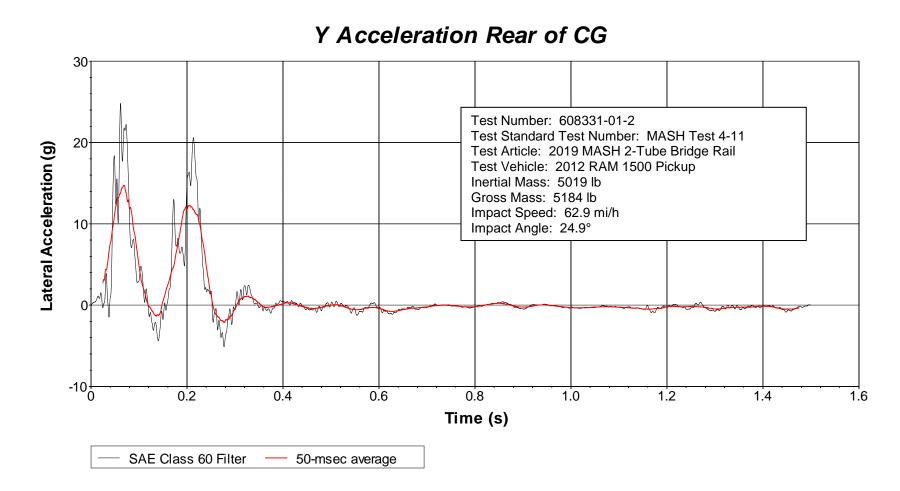


Figure D.8. Vehicle Lateral Accelerometer Trace for Test No. 608331-01-2 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

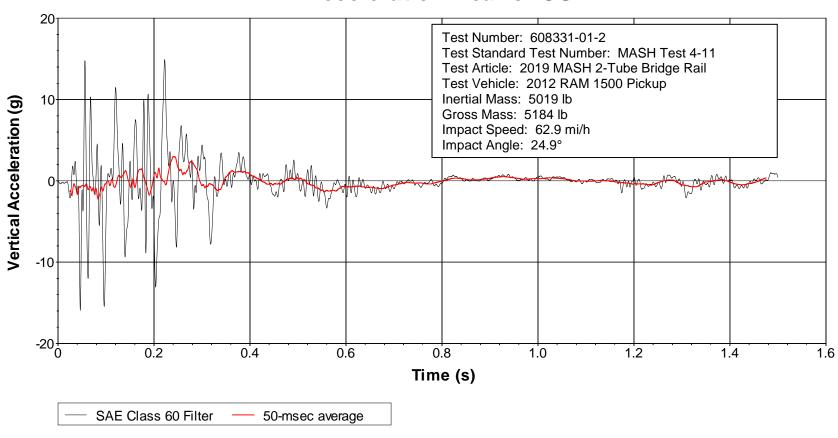


Figure D.9. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-2 (Accelerometer Located Rear of Center of Gravity).

APPENIDX E. MASH TEST 4-10 (CRASH TEST NO. 608331-01-3)

E1 VEHICLE PROPERTIES AND INFORMATION

Table E.1. Vehicle Properties for Test No. 608331-01-3.

Date:	2018-12-14	Test No.:	608331-01-3	VIN No.:	KNAC	H4A3XA6	680107			
Year:	2010	Make:	Kia	Model:		Rio				
Tire Ir	nflation Pressure:	32 psi	Odometer:	166024	Tire Size:	185/	65R14			
Descr	Describe any damage to the vehicle prior to test: None									
	notes acceleromet S: <u>None</u>	ter location.	- A M		••		N T			
Engin Trans	e Type: 4 cylir e CID: 1.6 L mission Type: Auto or FWD RV nal Equipment:	Manual		-Q	• • • • • • • • • • • • • • • • • • • •		B B			
Type Mas:		percentile male 165 lb Side	- F	H	-X-	D -	L _K			
Geon	-		-		C	>				
<u>A</u>	66.38 F	33.00	K 12.25	_ P	4.12	U _	15.75			
В —	51.50 G 165.75 H	35.90	L25.25 M 57.75	_ Q	22.50 15.50	V _	21.50 35.90			
C _	165.75 H 34.00	7.75	M <u>57.75</u> N 57.70	_ R s	8.25	W _	108.00			
E —	98.75 J	21.50	0 28.25	_	66.20	^ _	100.00			
W	neel Center Ht Fro	ont 11.00 C = 168 ±8 inches; E = 98	Wheel Center #5 inches; F = 35 ±4 inches; G #ches; W-H < 2 inches or use M.	= 39 ±4 inches; O = TO	11.00	— W-H SUPPORT (24 ±4	0.00			
GVWI	R Ratings:	Mass: Ib	<u>Curb</u>		<u>nertial</u>	Gros	ss Static			
Front	1718	M_{front}	1581		1560		1645			
Back	1874	Mrear	903		894		974			
Total	3638	M _{Total}	2484		2454		2619			
Mass Ib	Distribution:	LF: <u>781</u>	Allowable TIM	= 2420 lb ±55 lb Allow	423	RR:	471			

Table E.2. Exterior Crush Measurements for Test No. 608331-01-3.

608331-01-3

VIN No.:

Year:	2010	Make:	Kia	Model:		Rio
	3 77	EIIIOLE ODI	IGH ME AGUDE	MENIT GHEL	erel	
	V		JSH MEASURE		517	
		Cor	mplete When Applica	able		
	End Dam	age		Sic	le Damage	
	Undeformed (end width		Bowing: B1	X1 _	
	Corner	shift: A1		B2	X2 _	
		A2				
	End shift at frame	(CDC)	В	owing constant		
	(check one)		X1+X2	_	
	<	4 inches		2		
	>	4 inches				

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

G :G		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C ₃	C ₄	C ₅	C ₆	±D
1	AT FT BUMPER	15	11	30	11	7	5	4	2	1	+11
2	ABOVE FT BUMPER	15	10	44	1	4	6	8	9	10	+60
	Measurements recorded										
	✓ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

2018-12-14

Test No.:

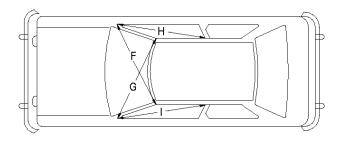
Date:

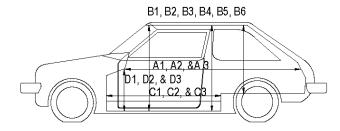
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

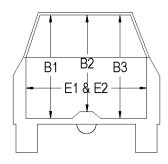
Note: Use as many lines/columns as necessary to describe each damage profile.

KNADH4A3XA6680107

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.


Table E.3. Occupant Compartment Measurements for Test No. 608331-01-3.

 Date:
 2018-12-14
 Test No.:
 608331-01-3
 VIN No.:
 KNADH4A3XA6680107

 Year:
 2010
 Make:
 Kia
 Model:
 Rio

^{*}Lateral area across the cab from driver's side kick panel to passenger's side kick panel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After (inches)	Differ.
A1	67.50	66.00	-1.50
A2	67.25	67.25	0.00
АЗ	67.75	67.75	0.00
B1	40.50	39.50	-1.00
B2	39.00	39.00	0.00
ВЗ	40.50	40.50	0.00
B4	36.25	36.25	0.00
B5	36.00	36.00	0.00
В6	36.25	36.25	0.00
C1	26.00	22.00	-4.00
C2	0.00	0.00	0.00
СЗ	26.00	26.00	0.00
D1	9.50	9.00	-0.50
D2	0.00	0.00	0.00
D3	9.50	9.50	0.00
E1	51.50	53.00	1.50
E2	51.00	52.50	1.50
F	51.00	51.00	0.00
G	51.00	50.50	-0.50
Н	37.50	37.25	-0.25
I	37.50	37.50	0.00
J*	51.00	49.50	-1.50

E2 SEQUENTIAL PHOTOGRAPHS

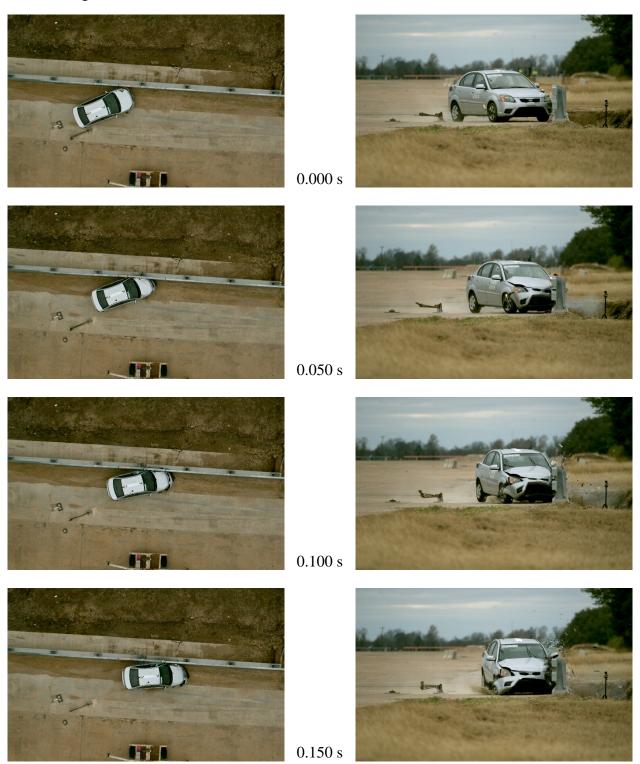


Figure E.1. Sequential Photographs for Test No. 608331-01-3 (Overhead and Frontal Views).

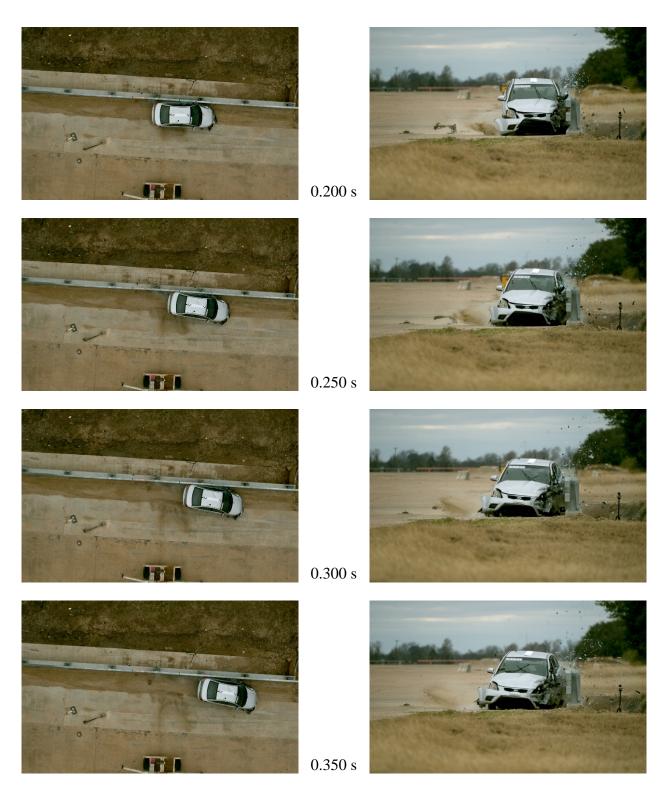


Figure E.1C.1. Sequential Photographs for Test No. 608331-01-3 (Overhead and Frontal Views) (Continued).

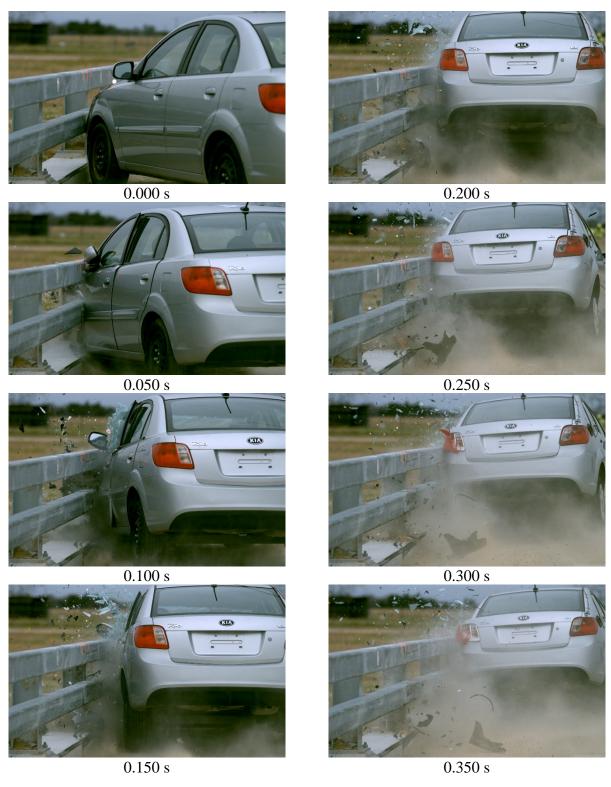


Figure E.2. Sequential Photographs for Test No. 608331-01-3 (Rear View).

Figure E.3. Vehicle Angular Displacements for Test No. 608331-01-3.

3. Roll.

Figure E.4. Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-3 (Accelerometer Located at Center of Gravity).

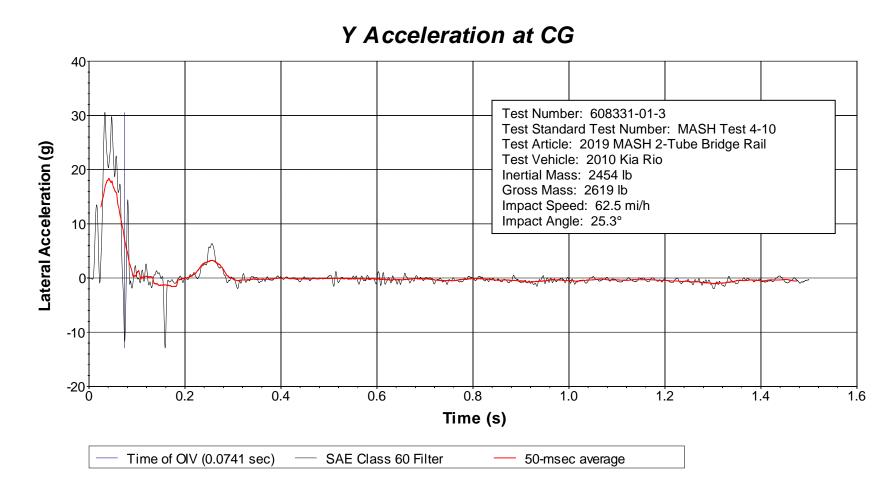


Figure E.5. Vehicle Lateral Accelerometer Trace for Test No. 608331-01-3 (Accelerometer Located at Center of Gravity).

Figure E.6. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-3 (Accelerometer Located at Center of Gravity).

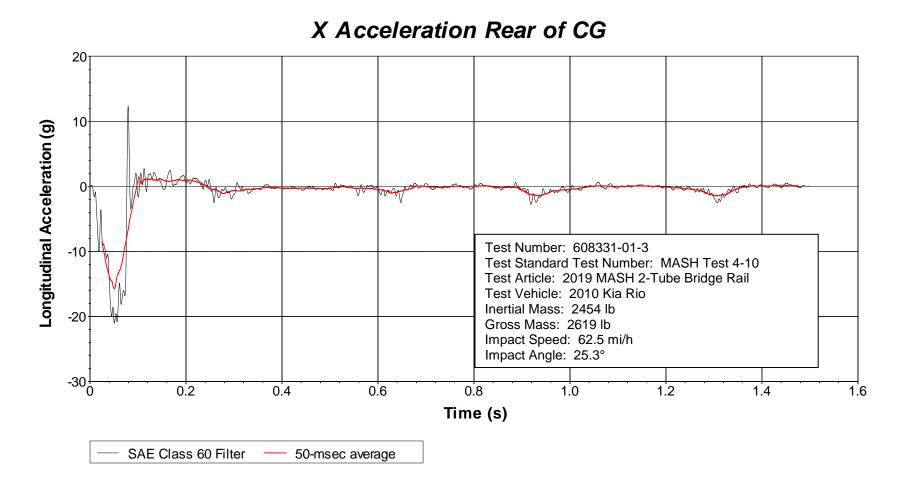


Figure E.7. Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-3 (Accelerometer Located Rear of Center of Gravity).

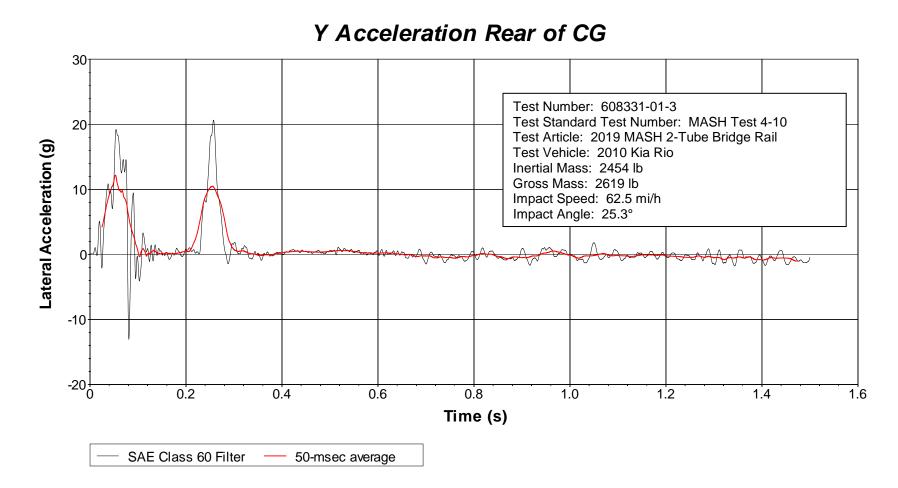


Figure E.8. Vehicle Lateral Accelerometer Trace for Test No. 608331-01-3 (Accelerometer Located Rear of Center of Gravity).

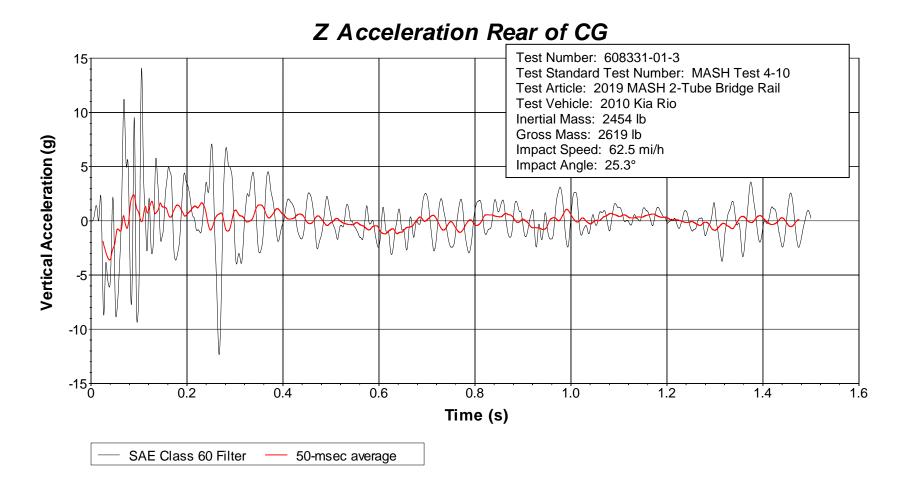


Figure E.9. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-3 (Accelerometer Located Rear of Center of Gravity).