8. Quantity Calculations and Cost Estimates

8.1. Planning Stage (Level 1)
Bridge Section frequently provides planning estimates for projects involving bridges and other transportation structures. Typically planning level estimates are requested at the Statewide Transportation Improvement Program (STIP) development and regional project initiation stage. These estimates are developed quickly, with very limited information, and require many assumptions. The following applies to developing a planning cost estimate:

8.1.8. Responsibility
Bridge Section engineers develop planning cost estimates. The Chief Bridge Engineer reviews all planning estimates before they are sent to the regions.

8.1.9. Basis for Estimate
Base the planning estimates on historical cost data, location, the anticipated structure and foundation type, and estimated square foot of deck area. Deck area is a function of the anticipated bridge length and width. Develop an approximate length from any existing site information or by increasing the existing bridge (if any) length by 10 percent then rounding up to a logical value.

Consult with the Statewide Hydraulics Engineer to verify the existing waterway opening prior to finalizing the preliminary bridge length.

For bridge width, match the proposed roadway width plus the width of the proposed bridge rails/barriers. Widths are sometimes determined by reviewing other recent projects in the same highway vicinity of the project.

Use Table 8-1 as a starting point for estimating the bridge construction costs. For more complicated or difficult projects, the bridge engineer should use the higher end of the range.

8.1.10. Ancillary Costs
The values in Table 8-1 incorporate only the basic bid item costs for typical bridges. Increase these values to reflect the ancillary costs to determine the estimated total project cost.

Either the Bridge Section or the region will determine these costs. In either case, clearly identify in the estimate whether the ancillary costs are included. Use the following guidance for adding contingency, mobilization, and construction engineering costs to the planning cost estimate:

Bridge Approach Roadway Costs
Include the approach roadway costs (sometimes called “logical touchdown costs”) in planning estimates if not included separately by the regions. Use 30 percent of the cost of the bridge for the cost of transitioning from the new bridge to the existing roadway. In the Department’s experience, this provides a conservative estimate suitable for planning and preliminary budgeting purposes.

Contingencies
For anticipated but undetermined costs, add a 20 to 30 percent contingency factor based on the sum of the estimated construction costs. The contingency factor is related to the amount of uncertainty in the hydraulic, foundation, and roadway geometric information at the time the estimate is being developed.

Mobilization and Demobilization
Add 10 percent of the basic bid item costs for the contractor’s mobilization and demobilization. This is the cost incurred by the contractor to mobilize the labor and equipment necessary for construction. A higher percentage may be justified for projects in remote areas.

Engineering
Add 15 to 20 percent of the estimated cost for preliminary engineering. Add 15 percent for construction engineering.

Indirect Cost Allocation Program (ICAP)
Add the percentage specified in the most recent Department ICAP memorandum to the total
preliminary engineering and construction costs to account for the Department’s overhead cost to construct the project. For smaller projects, percentages for contingencies, mobilization, and engineering may be higher. For larger projects, these percentages may be lower.

<table>
<thead>
<tr>
<th>Structure Types</th>
<th>Typical Span Range (feet)</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated Pipe</td>
<td>1-7</td>
<td>$250-$300 / LF</td>
</tr>
<tr>
<td>Concrete Box Culvert</td>
<td>5-20</td>
<td>$500 - $4000 / LF</td>
</tr>
<tr>
<td>Plate Arch Culvert</td>
<td>10-20</td>
<td>$175-$600 / LF</td>
</tr>
<tr>
<td>Post-Tensioned Concrete Box Girder</td>
<td>120-240</td>
<td>$250-$500 / SF</td>
</tr>
<tr>
<td>Prestressed Concrete Voided Slab</td>
<td>20-60</td>
<td>$200-$300 / SF</td>
</tr>
<tr>
<td>Prestressed Concrete Deck Bulb-Tee</td>
<td>50-145</td>
<td>$250-$350 / SF</td>
</tr>
<tr>
<td>Prestressed Concrete Girder</td>
<td>50-140</td>
<td>$300-$400 / SF</td>
</tr>
<tr>
<td>Steel Rolled Girder</td>
<td>20-120</td>
<td>$300-$400 / SF</td>
</tr>
<tr>
<td>Steel Rolled Girder with Precast Deck Panels</td>
<td>20-120</td>
<td>$300-$450 / SF</td>
</tr>
<tr>
<td>Steel Plate Girder</td>
<td>60-400</td>
<td>$300-$450 / SF</td>
</tr>
<tr>
<td>Steel Box Girder</td>
<td>100-400</td>
<td>$300-$450 / SF</td>
</tr>
<tr>
<td>Timber</td>
<td>10-20</td>
<td>$200-$300 / SF</td>
</tr>
<tr>
<td>Glulam Timber</td>
<td>15-40</td>
<td>$200-$300 / SF</td>
</tr>
<tr>
<td>Plate Arch Railroad Tube</td>
<td>25-35</td>
<td>$1500-$3500 / SF</td>
</tr>
<tr>
<td>Structures for Conventional Site Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segmental Post-Tensioned Box Girder</td>
<td>200-600</td>
<td>$400-$750 / SF</td>
</tr>
<tr>
<td>Cable Stayed Bridge</td>
<td>600-1200</td>
<td>$500-$2000 / SF</td>
</tr>
<tr>
<td>Suspension Bridge</td>
<td>600-5000</td>
<td>$500-$2000 / SF</td>
</tr>
<tr>
<td>Arch Bridge</td>
<td>50-400</td>
<td>$500-$2000 / SF</td>
</tr>
<tr>
<td>Movable Span Bridge</td>
<td>200-350</td>
<td>> $2000 / SF</td>
</tr>
<tr>
<td>Tunnel</td>
<td>30+</td>
<td>> $2000 / SF</td>
</tr>
</tbody>
</table>

While these cost ranges are reasonably accurate at the time of publication, they should be used with caution due to inflation and volatility in construction materials, equipment operation, and labor costs.
8.2. Bridge Type Selection (Level 2)

At the Bridge Type Selection stage, the project manager submits a “start package” including preliminary highway alignment data, proposed typical section, and site contours including right-of-way limits. Lay out the bridge using the preliminary roadway plan, profile, typical section, site topography, and other available design information included in the start package. The layout should include estimated piles sizes, cast-in-place (CIP) concrete member sizes, span lengths, and riprap geometry. Most member sizes can be accurately estimated from past projects, geometric compatibility, and simplified structural analysis.

The project manager may request estimates for multiple bridge types while an environmental document is being developed.

Select the most feasible, constructable, and usually the most economical type of structure to fit the project and develop General Layout and Site Plan sheets. This structure may differ from the structure envisioned in earlier estimates. Use the General Layout and Site Plan to calculate preliminary quantities and develop the Bridge Type Selection estimate.

8.2.8. Quantity Calculations

General Guidelines

The quantity calculations require rapid (typically, a day per bridge or less) but close approximation of the final bridge quantities. Include all items required for bridge construction, and use graphs and tables, similar bridges, and computations based on dimensions from the preliminary plans. The objective is to complete a relatively accurate estimate in a minimal amount of time. Bridge quantities are typically placed in a table on the General Layout or Site Plan Sheet.

Consider the following guidelines when calculating quantities:

1. Pay Items. Each pay item has an official title and item number that is tied to the Standard Specifications for Highway Construction, which are also listed in the Department’s bid item database. The Department uses these coded item numbers for tracking and as a historic database. Cross check all items against the Standard Specifications, Standard Modifications, and Special Provisions to ensure the use of the appropriate pay items, methods of measurement, and basis of payment. Division 500 presents structural items. For some specialty or new items, the pay item number may not be in the database. If unable to locate a pay item, the bridge engineer may request a new pay item through the Regional Bid Tab Coordinator.

2. Units of Measurement. Record the quantity of all contract bid items consistent with the terms and units of measurement presented in the applicable item sections of the Alaska Standard Specifications. Table 8-2 presents the units of measurements for typical bridge items.

3. Computations. The bridge engineer may use manual and computer methods to compute bridge quantities. Prepare computation sheets for each bid item and retain all computation sheets in the project file.

4. Significant Digits. In all quantity calculations, retain enough significant digits so that accuracy is neither sacrificed nor exaggerated. Calculate quantities for individual structure elements to one significant figure beyond the rounding value shown in Table 8-2, when applicable.

5. Rounding. Match exactly the quantity of any item provided in quantity summaries with the number provided on computation sheets. Round the total item quantity for a structure to the value shown in Table 8-2. Note any required rounding of a raw estimate on the computation sheet consistent with Table 8-2. Do not round the result of a quantity calculation until the value is ready for incorporation into the Bridge Basis of Estimate Table. Do not round lump-sum items and items measured as “each.”

6. Bridge Basis of Estimate Table. Segregate the quantities into separate columns with respect to the substructure and superstructure. For lump-sum items, provide the calculated quantity for the item.

Lump-Sum Items

In general, DOT&PF uses the lump-sum method of payment for items of work that are easily defined and unlikely to vary. Lump-sum items are estimated using the units identified in Table 8-2. When a lump-sum item is developed without using an estimating unit (Removal of Structures and Obstructions, Cofferdams, etc.), note the basis of the estimated cost and any special circumstances or relevant information in the quantity calculation package. Ensure this information
is properly addressed in the plans and Special Provisions.

Excavation and Riprap
Where possible at the Bridge Type Selection stage, round excavation and riprap quantities to the nearest 10 cubic yards. Do not provide the dimensions of width, length, and depth more accurately than the nearest foot.

Concrete
Calculate concrete subtotals for various elements (e.g., abutments, piers) in cubic feet to the nearest tenth of a cubic foot. Carry dimensions to the hundredth of a foot, except for a thin cross section multiplied by a large length (e.g., slab cross section) where rounding to one hundredth could produce a large discrepancy in the final quantity. After totaling all subtotals, convert the total to cubic yards and round according to Table 8-2.

8.2.9 Cost Estimate
The bridge engineer updates the structural costs used for the planning construction cost estimate at the Bridge Type Selection stage. The bridge engineer should make a reasonable estimate of the structure quantities (within ± 10 percent). If the quantities can be estimated, use the following procedure for the updated cost estimate:

Unit Costs
Review historic data from similar projects to determine the unit costs. Possible sources include bid tabulations maintained by the Bridge Section and *Means Heavy Construction Cost Data*, an industry publication. For elements with little or no known information, contact industry sources for possible unit cost guidance.

See Table 8-2.

Adjustments
Adjust the estimated construction cost to reflect the conditions at the bridge site. Adjustment factors may include:

- Geographic location
- Age of most recent construction costs
- Recent trends in cost of materials (e.g., shortages)
-Extent of falsework required
- Anticipated difficulty of construction
- Size of project relative to size of previous projects for which cost data is available
- Known foundation problems at the bridge site
- Anticipated construction logistics (e.g., traffic control during construction)
- Any other factors that are considered appropriate for the structure
- Judgment and experience of the bridge engineer

Inflation
Do not adjust the cost for expected inflation at the time of construction. However, note the date the cost estimate was prepared.

Ancillary Costs
The discussion on ancillary costs found in Section 8.1 applies to the Bridge Type Selection cost estimate, except as follows:

- Reduce the percentage of anticipated but undetermined costs as more quantities are calculated.
- Add 15 percent of the estimated cost for construction engineering.

Preliminary engineering costs rarely vary enough to justify a separate line in a Bridge Type Selection estimate. In the unusual case where preliminary engineering costs are significantly different between alternatives, include separate line items for preliminary engineering and construction engineering.

Life-Cycle Costs Analysis
When required by the Chief Bridge Engineer, conduct a life-cycle cost analysis for each design alternative. This analysis allows the user to compare different design lives for each alternative. TRB’s *National Cooperative Highway Research Program (NCHRP) Report 483: Bridge Life-Cycle Cost Analysis* contains a methodology for bridge life-cycle cost analysis (BLCCA), software that automates the methodology, and a guidance manual for implementing BLCCA.
<table>
<thead>
<tr>
<th>Pay Item Number</th>
<th>Pay Item Name</th>
<th>Estimating Quantity</th>
<th>Method of Calculating Quantities</th>
<th>Rounding Accuracy</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>202(23)</td>
<td>Removal of Existing Bridge</td>
<td>SF</td>
<td>Total area of existing bridge deck</td>
<td>1</td>
<td>$15/SF to $60/SF</td>
</tr>
<tr>
<td>205(1)</td>
<td>Excavation for Structures</td>
<td>CY</td>
<td>Only needed when excavation exceeds that associated with "normal" work. In such cases, assume that the total volume is equal to the cross sectional area at centerline roadway times the estimated length perpendicular to the cross section.</td>
<td>10</td>
<td>$25/CY to $75/CY</td>
</tr>
<tr>
<td>205(6)</td>
<td>Structural Fill</td>
<td>CY</td>
<td>Fill between the wingwalls times the maximum height from the bottom of the footing to the bottom of the approach slab or roadway section times 50 feet behind each backwall or end diaphragm.</td>
<td></td>
<td>$35/CY to $100/CY</td>
</tr>
<tr>
<td>501(1)</td>
<td>Class A Concrete</td>
<td>CY</td>
<td>Volume of concrete based upon preliminary dimensions of columns/piles, cap beams, wingwalls, diaphragms, etc. Assume all pipe piles are filled with CIP concrete from the bottom of the cap down 55 feet.</td>
<td>0.1</td>
<td>$1400/CY to $2400/CY</td>
</tr>
<tr>
<td>501(2)</td>
<td>Class A-A Concrete</td>
<td>CY</td>
<td>Volume of concrete based upon preliminary dimensions of CIP deck slabs and approach slabs.</td>
<td>0.1</td>
<td>$1500/CY to $2500/CY</td>
</tr>
<tr>
<td>501(7)</td>
<td>Precast Concrete Members (Girders)</td>
<td>LBS</td>
<td>Determine the number and cross sectional area of prestressed girders (typically 6 to 8 girders in the cross section for standard two-lane bridges) using the Department’s bulb-tee program or other reasonable approach. Calculate the weight of each girder using 160 PCF.</td>
<td>1</td>
<td>$0.45/LB to $0.70/LB</td>
</tr>
<tr>
<td>503(1)</td>
<td>Reinforcing Steel</td>
<td>LBS</td>
<td>Assume 4% of the total weight of all CIP concrete (Class A + Class A-A) for standard decked bulb-tee girder bridge. Assume 8% when drilled shafts are used.</td>
<td>10</td>
<td>$1.50/LB to $2.25/LB</td>
</tr>
</tbody>
</table>
Table 8-2
Quantity Calculations and Cost Estimates
(Type Selection)
Page 2 of 5

<table>
<thead>
<tr>
<th>Pay Item Number</th>
<th>Pay Item Name</th>
<th>Estimating Quantity</th>
<th>Method of Calculating Quantities</th>
<th>Rounding Accuracy</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>503(2)</td>
<td>Epoxy-Coated Reinforcing Steel</td>
<td>LBS</td>
<td>Assume 2% to 3% of the total weight of all CIP concrete (Class A + Class A-A) for standard decked bulb-tee girder bridge. Assume 6% when CIP decks are used.</td>
<td>10</td>
<td>$1.75/LB to $2.75/LB</td>
</tr>
<tr>
<td>504(1)</td>
<td>Structural Steel</td>
<td>LBS</td>
<td>Calculate the preliminary girder sized based upon standard depth-to-span ratio and slenderness ratios. In lieu of structural analysis, assume the following: Continuous spans: (w = 20 + 0.2 \times L) Simple spans: (w = 25 + 0.3 \times L) Where L is the maximum individual span length (feet) and w is the total unit weight of structural steel (pounds per square foot) including girders and all steel included in the pay item.</td>
<td>10</td>
<td>$2.25/LB to $3.00/LB $6.00/LB for small quantities (e.g., seismic retrofit work)</td>
</tr>
<tr>
<td>505(5)</td>
<td>Furnish Structural Steel Piles</td>
<td>LF</td>
<td>ABUTMENTS: For non-liquefiable soils, assume one HP 14 × 117 pile per girder reaction. For liquefiable soils, assume that one 24-inch diameter × ½ inch pipe pile is used per girder reaction. PIERS: For pier heights less than 15 feet, assume 36-inch diameter × ¾ inch pipe piles are used at a spacing of 10 feet. Otherwise, assume 48-inch diameter × 1-inch pipe piles are used at a spacing of 12 feet.</td>
<td>1</td>
<td>$75/LF to $105/LF for HP14X117 $275/LF to $300/LF for 36-inch diameter $475/LF to $525/LF for 48-inch diameter</td>
</tr>
<tr>
<td>505(6)</td>
<td>Drive Structural Steel Piles</td>
<td>EA</td>
<td>The number of each type of pile to be driven</td>
<td>1</td>
<td>$10,000/pile for 24-inch diameter & HP14x117 $20,000/pile for 36-inch diameter $35,000/pile for 48-inch diameter</td>
</tr>
</tbody>
</table>
Table 8-2

Quantity Calculations and Cost Estimates

(Type Selection)

Page 3 of 5

<table>
<thead>
<tr>
<th>Pay Item Number</th>
<th>Pay Item Name</th>
<th>Estimating Quantity</th>
<th>Method of Calculating Quantities</th>
<th>Rounding Accuracy</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>507(1)</td>
<td>Steel Bridge Railing</td>
<td>LF</td>
<td>Calculate the total two-tube bridge length including rail on the wingwalls from preliminary bridge layout</td>
<td>1</td>
<td>$175/LF to $250/LF</td>
</tr>
<tr>
<td>507(2)</td>
<td>Pedestrian Bridge Railing</td>
<td>LF</td>
<td>Calculate the total three-tube bridge length including rail on the wingwalls from preliminary bridge layout</td>
<td>1</td>
<td>$200/LF to $275/LF</td>
</tr>
<tr>
<td>507(4)</td>
<td>Concrete Barrier</td>
<td>LF</td>
<td>Calculate the total bridge barrier length including rail on the wingwalls from preliminary bridge layout</td>
<td>1</td>
<td>$250/LF to $325/LF</td>
</tr>
<tr>
<td>508(1)</td>
<td>Waterproofing Membrane</td>
<td>SY</td>
<td>Calculate total membrane area on bridge deck and approach slabs between curbs.</td>
<td>1</td>
<td>$20/SY to $30/SY</td>
</tr>
<tr>
<td>511(1)</td>
<td>Mechanically Stabilized Earth Wall</td>
<td>SF</td>
<td>Calculate the total area of wall face based upon preliminary bridge layout. Area of wall is measured from top of coping to bottom of wall panels.</td>
<td></td>
<td>$45/SF to $65/SF</td>
</tr>
<tr>
<td>512(2)</td>
<td>Falsework</td>
<td>SF</td>
<td>Typically the cost of falsework is included in the 501 pay items – that is, it is subsidiary to CIP concrete. Falsework may be bid as a separate pay item for CIP box girders or other non-standard bridge types are specified that require significant amounts of falsework. If falsework is bid as a separate pay item, reduce the unit cost of CIP concrete.</td>
<td></td>
<td>$25/SF to $75/SF</td>
</tr>
<tr>
<td>513(1)</td>
<td>Field Painting of Steel Structures</td>
<td>SF</td>
<td>Avg. value of 125 SF per ton of structural steel. Table 3 on page 270 of "Good Painting Practice Third Edition," Steel Structures Painting Council provides more detail. Calculate actual surface area and check conversion factors from this table on large, deep plate and box girders.</td>
<td></td>
<td>$15/SF to $20/SF for (E) bridges w/ zinc paint. $30/SF to $35/SF for (E) bridges w/ lead paint</td>
</tr>
</tbody>
</table>
Table 8-2
Quantity Calculations and Cost Estimates
(Type Selection)
Page 4 of 5

<table>
<thead>
<tr>
<th>Pay Item Number</th>
<th>Pay Item Name</th>
<th>Estimating Quantity</th>
<th>Method of Calculating Quantities</th>
<th>Rounding Accuracy</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>520(1)</td>
<td>Temporary Crossing</td>
<td>SF</td>
<td>Calculate the deck area based upon the estimated length and width required for the detour bridge. Typical bridge width is 34 feet out-to-out.</td>
<td></td>
<td>$100/SF to $175/SF</td>
</tr>
<tr>
<td>606(16)</td>
<td>Transition Rail</td>
<td>EA</td>
<td>Typically, there is one thrie beam transition railing at each end of the bridge railing – 4 per bridge.</td>
<td>1</td>
<td>$2500/EA to $3500/EA</td>
</tr>
<tr>
<td>611(1)</td>
<td>Riprap, Class II</td>
<td>CY</td>
<td>Calculate the volume of riprap using the preliminary bridge layout. The riprap volume can be estimated as the cross section area times the length of the riprap measured along the center-of-gravity of the cross section. In lieu of calculations, use 1000 CY for “normal” riprap usage and 2500 CY for “extensive” riprap usage.</td>
<td>10</td>
<td>$50/CY to $100/CY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In remote locations, $250/CY depending upon local availability</td>
</tr>
<tr>
<td>631(2)</td>
<td>Geotextile, Erosion Control, Class I</td>
<td>SY</td>
<td>Calculate the area of geotextile from the preliminary bridge layout. In lieu of calculations, use the same area of geotextile in SY as volume of riprap in CY.</td>
<td>10</td>
<td>$2.00/SY to $4.00/SY</td>
</tr>
<tr>
<td>640(1)</td>
<td>Mobilization and Demobilization</td>
<td>%</td>
<td>The mobilization and demobilization is typically taken to be 10% of the total construction cost. Thus, use 11.1% of the subtotal bridge bid cost.</td>
<td>Subtotal of all other bridge bid prices time 1/9</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>Construction Engineering</td>
<td>%</td>
<td>Use 15% of the total estimated construction cost</td>
<td>Total bridge cost including mobilization times 15%</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>ICAP</td>
<td>%</td>
<td>This “overhead” cost changes every year. Use the published value. In lieu of the published value, use 4.79%.</td>
<td>Total bridge plus construction engineering cost times 4.79%</td>
<td></td>
</tr>
</tbody>
</table>
Table 8-2
Quantity Calculations and Cost Estimates
(Type Selection)
Page 5 of 5

<table>
<thead>
<tr>
<th>Pay Item Number</th>
<th>Pay Item Name</th>
<th>Estimating Quantity</th>
<th>Method of Calculating Quantities</th>
<th>Rounding Accuracy</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contingency</td>
<td>%</td>
<td>For preliminary designs, include a contingency that is reflective of the available information. Use the following:</td>
<td></td>
<td>Total bridge cost including ICAP times the appropriate factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. 20% to 25% when roadway, hydraulic and foundation information is available and used in the preliminary bridge layout</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. 25% to 30% when roadway information is available and an existing bridge is being replaced but no specific hydraulic or foundation data is available</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. 30% to 35% when roadway information is available but no hydraulic or foundation information is available and the proposed bridge is not reasonably close to any existing bridge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3. PS&E Stage (Level 3)

8.3.8. Quantity Calculations

Update Calculations
The bridge engineer must revisit all quantity calculations as determined at the Bridge Type Selection stage (see Section 8.2.1) and update as necessary.

Reinforcing Steel
The reinforcing steel quantity is based on the weight of the reinforcing bar. Calculate bar lengths to hundredths of a foot. Accumulate total lengths of bar in each size before weights are extended to reduce rounding errors. Use Table 8-3 to obtain the weight in pounds for the appropriate reinforcing steel size. Do not include the weight of incidental items in this quantity.

Structural Steel
The structural steel quantity is based on the weight of the steel components in the structure. The contract documents present structural steel as a lump sum bid item, but also provide the steel weight as information only to assist the contractor in preparing the bid. Include the weight of all beams, plates, diaphragms, stiffeners, bearing plates, bolts and nuts, shear studs, rockers, rollers, pins and nuts, expansion dams, roadway drains and scuppers, weld metal and structural shapes for expansion joints, and pier protection in the estimate.

Calculate the weight of the steel using the following guidelines:

1. **Lengths.** Carry lengths to the hundredth of a foot.
2. **Unit Weights.** Structural steel has a weight density of 490 lb/feet³. See the Alaska Standard Specifications for the weight density of other common metals.
3. **Shapes, Plates, Railing, and Flooring.** Calculate the nominal weights and dimensions as shown on the contract drawings, deducting for copes, cuts, and open holes, exclusive of bolt holes.
4. **Casting.** Compute the weights for castings from the dimensions shown on the plans with a 5 percent allowance for fillets and overruns. Deduct the weight for drillings or borings. The bridge engineer may use scale weights for castings of small complex parts, because it could be difficult to compute their weight accurately.

5. **Bolts, Nuts, and Washers.** Measure bolts, nuts, and washers for payment based on the computed weight as presented in the Alaska Standard Specifications.
6. **Fillet Welds.** Estimate fillet welds using Table 8-4 and the Alaska Standard Specifications.
7. **Rounding.** Round the total of the structural steel to the nearest 10 lbs.

8.3.9. Cost Estimate

Update Estimate
The bridge engineer must revise the cost estimate from the Bridge Type Selection stage (see Section 8.2.2) to reflect the final bid items and quantities. No “contingency” is used at the PS&E stage.

Submit the final estimate to the project manager in spreadsheet format along with the plans and Special Provisions. Some project managers also want a copy of the quantity calculations, and these should be submitted with the PS&E package if requested.

The project manager merges the cost estimates for structural and other project pay items to determine the Engineer’s Estimate for the project.

Engineer’s Estimate
The Engineer’s Estimate is the final estimate used for programming construction funding. It lists the total quantity and estimated price for each pay item. Pay item quantities in the Engineer’s Estimate must match the estimate of quantities in the plans and the bid schedule in the bidding documents. The project manager uses the Engineer’s Estimate as a basis for requesting Authority to Advertise (ATA) a project. After bids are received, the Engineer’s Estimate provides a basis for determining the reasonableness of the bids.

Design Aid Formulas
The following figures present various mathematical relationships to assist the bridge engineer with quantity estimating:

- Figure 8-1 — Slope Equations
- Figure 8-2 — Trigonometric Solution of Triangles
- Figure 8-3 — Area of Plane Figures
- Figure 8-4 — Surface Area and Volume of Solids
Table 8-3
Reinforcing Steel Sizes and Weights

<table>
<thead>
<tr>
<th>Nominal Properties</th>
<th>US Customary Designation</th>
<th>Metric Designation</th>
<th>Diameter (in)</th>
<th>Area (in²)</th>
<th>Weight (lb/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3</td>
<td>#10</td>
<td>0.375</td>
<td>0.11</td>
<td>0.376</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>#13</td>
<td>0.500</td>
<td>0.20</td>
<td>0.668</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>#16</td>
<td>0.625</td>
<td>0.31</td>
<td>1.043</td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>#19</td>
<td>0.750</td>
<td>0.44</td>
<td>1.502</td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td>#22</td>
<td>0.875</td>
<td>0.60</td>
<td>2.044</td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>#25</td>
<td>1.000</td>
<td>0.79</td>
<td>2.670</td>
<td></td>
</tr>
<tr>
<td>#9</td>
<td>#29</td>
<td>1.128</td>
<td>1.00</td>
<td>3.400</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>#32</td>
<td>1.270</td>
<td>1.27</td>
<td>4.303</td>
<td></td>
</tr>
<tr>
<td>#11</td>
<td>#36</td>
<td>1.410</td>
<td>1.56</td>
<td>5.313</td>
<td></td>
</tr>
<tr>
<td>#14</td>
<td>#43</td>
<td>1.693</td>
<td>2.25</td>
<td>7.650</td>
<td></td>
</tr>
<tr>
<td>#18</td>
<td>#57</td>
<td>2.257</td>
<td>4.00</td>
<td>13.600</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-4
Weights of Fillet Welds

<table>
<thead>
<tr>
<th>Nominal Size (in)</th>
<th>1/4</th>
<th>5/16</th>
<th>3/8</th>
<th>1/2</th>
<th>5/8</th>
<th>3/4</th>
<th>7/8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lb/ft)</td>
<td>0.20</td>
<td>0.25</td>
<td>0.35</td>
<td>0.55</td>
<td>0.80</td>
<td>1.10</td>
<td>1.50</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Note: Estimate other welds based on their theoretical dimension plus 50% for overrun.
CASE I

\[X = \frac{A}{S_1 - S_2} \]

CASE II

\[X = \frac{A}{S_1 + S_2} \]

CASE III

\[X = A + (S_2 - S_1)B \]

Area = \[\frac{A + X}{2} \] (B)

CASE IV

\[X = A + (S_2 - S_1)B \]

Area = \[\frac{A + X}{2} \] (B)

CASE V

\[X = A - (S_1 + S_2)B \]

Area = \[\frac{A + X}{2} \] (B)

CASE VI

\[X = A + (S_1 + S_2)B \]

Area = \[\frac{A + X}{2} \] (B)

Figure 8-1
Slope Equations
Right-Angled Triangles

<table>
<thead>
<tr>
<th>Given:</th>
<th>Sought:</th>
<th>Formulae:</th>
</tr>
</thead>
</table>
| a,c | A,B,b | \[
\sin A = \frac{a}{c}, \quad \cos B = \frac{a}{c}, \quad b = \sqrt{c^2 - a^2} \]
| | Area | \[
\text{Area} = \frac{a}{2} \sqrt{c^2 - a^2} \]
| a,b | A,B,c | \[
\tan A = \frac{a}{b}, \quad \tan B = \frac{b}{a}, \quad c = \sqrt{a^2 + b^2} \]
| | Area | \[
\text{Area} = \frac{ab}{2} \]
| A,a | B,b,c | B = 90° − A, \quad b = a \cot A, \quad c = \frac{a}{\sin A} \]
| | Area | \[
\text{Area} = \frac{a^2 \cot A}{2} \]
| A,b | B,a,c | B = 90° − A, \quad a = b \tan A, \quad c = \frac{b}{\cos A} \]
| | Area | \[
\text{Area} = \frac{b^2 \tan A}{2} \]
| A,c | B,a,b | B = 90° − A, \quad a = c \sin A, \quad b = c \cos A \]
| | Area | \[
\text{Area} = \frac{c^2 \sin A \cos A}{2} \quad \text{or} \quad \frac{c^2 \sin 2A}{4} \]

Figure 8-2

Trigonometric Solution of Triangles

Page 1 of 2
Oblique-Angled Triangles

<table>
<thead>
<tr>
<th>Given:</th>
<th>Sought:</th>
<th>Formulae:</th>
</tr>
</thead>
</table>
| a,b,c | A | \[
\sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{bc}}, \quad \cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}, \quad \tan \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}
\] |
| a,b,c | B | \[
\sin \frac{1}{2} B = \sqrt{\frac{(s-a)(s-c)}{ac}}, \quad \cos \frac{1}{2} B = \sqrt{\frac{s(s-b)}{ac}}, \quad \tan \frac{1}{2} B = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}
\] |
| a,b,c | C | \[
\sin \frac{1}{2} C = \sqrt{\frac{(s-a)(s-b)}{ab}}, \quad \cos \frac{1}{2} C = \sqrt{\frac{s(s-c)}{ab}}, \quad \tan \frac{1}{2} C = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}
\] |
| a,A,B | Area | \[
\text{Area} = \sqrt{s(s-a)(s-b)(s-c)}
\] |
| a,A,B | b,c | \[
b = a \sin \frac{B}{A}, \quad c = a \sin \frac{C}{A} = \frac{a \sin (A+B)}{\sin A}
\] |
| a,A,B | Area | \[
\text{Area} = \frac{1}{2} ab \sin C = \frac{a^2 \sin B \sin C}{2 \sin A}
\] |
| a,b,A | B | \[
\sin B = \frac{b \sin A}{a}
\] |
| a,b,A | c | \[
c = a \sin \frac{C}{A} = \frac{b \sin C}{\sin B} = \sqrt{a^2 + b^2 - 2ab \cos C}
\] |
| a,b,A | Area | \[
\text{Area} = \frac{1}{2} (ab) \sin C
\] |
| \((2bc)(\cos A)\) | a,b,C | \[
\tan A = \frac{a \sin C}{b - a \cos C}, \quad \tan \frac{1}{2}(A-B) = \frac{a - b}{a + b} \cot \frac{1}{2} C
\] |
| \((2bc)(\cos A)\) | c | \[
c = \sqrt{a^2 + b^2 - 2ab \cos C} = \frac{a \sin C}{\sin A}
\] |
| \((2bc)(\cos A)\) | Area | \[
\text{Area} = \frac{1}{2} (ab) \sin C
\] |
| $a^2 = b^2 + c^2 - (2bc)(\cos A), \quad b^2 = a^2 + c^2 - (2ac)(\cos B), \quad c^2 = a^2 + b^2 - (2ab)(\cos C)$

Figure 8-2
Trigonometric Solution of Triangles
Page 2 of 2
Square
Diagonal = \(d = s \sqrt{2} \)
Area = \(s^2 = 4b^2 = 0.5 \ d^2 \)
Example: \(s = 6; \ b = 3; \ Area = (6)^2 = 36 \)
\(d = 6 \times 1.414 = 8.484 \)

Rectangle and Parallelogram
Area = \(ab \) or \(b \sqrt{q^2 - b^2} \)
Example: \(a = 6; \ b = 3 \)
Area = \(3 \times 6 = 18 \)

Trapezoid
Area = \(\frac{1}{2} \ h(a + b) \)
Example: \(a = 2; \ b = 4; \ h = 3 \)
Area = \(\frac{1}{2} \times 3 \ (2 + 4) = 9 \)

Trapezium
Area = \(\frac{1}{2} \ \left[(h + h_1) + bh + ch \right] \)
Example: \(a = 4; \ b = 2; \ c = 2; \ h = 3; \ h_1 = 2 \)
Area = \(\frac{1}{2} \left(4(3 + 2) + (2 \times 2) + (2 \times 3) \right) = 15 \)

Triangles
Formulas apply to both figures.
Area = \(\frac{1}{2} \ bh \)
Example: \(h = 3; \ b = 5 \)
Area = \(\frac{1}{2} \ (3 \times 5) = 7.5 \)

\(s = \frac{a + b + c}{2} \)
Example: \(a = 2; \ b = 3; \ c = 4 \)
\(s = \frac{2 + 3 + 4}{2} = 4.5 \); Area = \(\sqrt{4.5(4.5 - 2)(4.5 - 3)(4.5 - 4)} = 2.9 \)

Regular Polygons
\begin{align*}
\text{5 sides} & = 1.720477 s^2 = 3.63271r^2 \\
\text{6 sides} & = 2.598150 s^2 = 3.46410r^2 \\
\text{7 sides} & = 3.633875 s^2 = 3.37101r^2 \\
\text{8 sides} & = 4.828427 s^2 = 3.1368 r^2 \\
\text{9 sides} & = 6.181875 s^2 = 3.27573r^2 \\
\text{10 sides} & = 7.694250 s^2 = 3.24920r^2 \\
\text{11 sides} & = 9.365675 s^2 = 3.22993r^2 \\
\text{12 sides} & = 11.196300 s^2 = 3.21539r^2
\end{align*}
\(n = \text{number of sides}; \ r = \text{short radius}; \ s = \text{length of side}; \ R = \text{long radius}. \)

\(\text{Area} = \frac{n}{4} s^2 \cot \left(\frac{180^\circ}{n} \right) = \frac{n}{2} R^2 \sin \left(\frac{360^\circ}{n} \right) = nr^2 \tan \left(\frac{180^\circ}{n} \right) \)
Circle

- \(\pi = 3.1416; \ \text{A} = \text{area}; \ \text{d} = \text{diameter} \)
- \(\text{p} = \text{circumference or periphery}; \ \text{r} = \text{radius} \)
- \(\text{p} = \pi \text{d} = 3.1416 \text{d} \)
- \(\text{p} = 2\pi \text{r} = 6.2832 \text{r} \)
- \(\text{d} = \frac{\text{p}}{\pi} = \frac{3.1416}{\pi} \text{d} \)
- \(\text{r} = \frac{\text{p}}{2\pi} = \frac{3.1416}{6.2832} \text{r} \)
- \(\text{A} = \pi \text{r}^2 = 3.1416 \text{r}^2 \)

Circular Ring

Area = \[\pi \left(R^2 - r^2 \right) = 3.1416 \left(R^2 - r^2 \right) \]
Area = \[0.7854 \left(D^2 - d^2 \right) = 0.7854(D - d)(D + d) \]
Area = difference in areas between the inner and outer circles.
Example: \(R = 4; \ r = 2 \)
Area = \[3.1416(4^2 - 2^2) = 37.6992 \]

Quadrant

Area = \[\frac{\pi \text{r}^2}{4} = 0.7854 \text{r}^2 = 0.3927c^2 \]
Example: \(r = 3; \ c = \text{chord} \)
Area = \[0.7851 \times 3^2 = 7.0686 \]

Segment

- \(b = \text{length of arc}; \ \theta = \text{angle in degrees}; \ c = \text{chord} = \left(\sqrt{4hr - h^2} \right) \)
- Area = \(\frac{1}{2} \left[br - c(r - h) \right] = \pi \text{r}^2 \left(\frac{\theta}{360} - \frac{c(r - h)}{2} \right) \)
- When \(\theta \) is greater than 180°, then \(\frac{c}{2} \times \text{difference between } \text{r and h} \) is added to the fraction \(\frac{\pi \text{r}^2 \theta}{360} \)
Example: \(r = 3; \ \theta = 120°; \ h = 1.5 \)
Area = \(3.1416 \times 3^2 \times \frac{120}{360} \times \frac{5.196 \left(3 - 1.5 \right)}{2} = 5.5278 \)

Figure 8-3

Area of Plane Figures

Page 2 of 3
<table>
<thead>
<tr>
<th>Sector</th>
</tr>
</thead>
</table>
| Sector Calculation: | Area = \(\frac{br}{2} = \pi r^2 \frac{\theta}{360^\circ} \)
\(\theta = \text{angle in degrees}; \ b = \text{length of arc} \)
Example: \(r = 3; \ \theta = 120^\circ \)
Area = \(3.1416 \times 3^2 \times \frac{120}{360} = 9.4248 \)
|
| **Spandrel** |
| Spandrel Calculation: | Area = \(0.2146 r^2 = 0.1073 c^2 \)
Example: \(r = 3 \)
Area = \(0.2146 \times 3^2 = 1.9314 \)
|
| **Parabola** |
| Parabola Calculation: | \(l =\frac{s^2}{8h} \left(\sqrt{c(1+c)} + 2.0326 \times \log \left(\sqrt{c} + \sqrt{1+c} \right) \right) \) \(\text{where} \ c = \left(\frac{4h}{s} \right)^2 \)
Area = \(\frac{2}{3} \times h \)
Example: \(s = 3; \ h = 4 \)
Area = \(\frac{2}{3} \times 3 \times 4 = 8 \)
|
| **Ellipse** |
| Ellipse Calculation: | Area = \(\pi ab = 3.1416ab \)
Circumference = \(2\pi \sqrt{\frac{a^2 + b^2}{2}} \) (close approximation)
Example: \(a = 3; \ b = 4 \)
Area = \(3.1416 \times 3 \times 4 = 37.6992 \)
Circumference = \(2 \times 3.1416 \sqrt{\frac{3^2 + 4^2}{2}} = 2 \times 3.1416 \times 3.5355 = 22.21 \)
|

Figure 8-3
Area of Plane Figures
Page 3 of 3
Parallelopiped

\[S = \text{perimeter (P) perpendicular to sides} \times \text{lateral length (l): } P_l \]
\[V = \text{area of base (B) x perpendicular height (h): } B_h \]
\[V = \text{area of section (A) perpendicular to sides} \times \text{lateral length (l): } A_l \]

Prism, Right, or Oblique, Regular or Irregular

\[S = \text{perimeter (P) perpendicular to sides} \times \text{lateral length (l): } P_l \]
\[V = \text{area of base (B) x perpendicular height (h): } B_h \]
\[V = \text{area of section (A) perpendicular to sides} \times \text{lateral length (l): } A_l \]

Cylinder, Right, or Oblique, Circular or Elliptic, etc.

\[S = \text{perimeter of base (P) x perpendicular height (h): } P_h \]
\[S = \text{perimeter (P)} \times \text{perpendicular to sides} \times \text{lateral length (l): } P_l \]
\[V = \text{area of base (B) x perpendicular height (h): } B_h \]
\[V = \text{area of section (A) perpendicular to sides} \times \text{lateral length (l): } A_l \]

Frustum of any Prism or Cylinder

\[V = \text{area of base (B) x perpendicular distance (h) from base to center of gravity of opposite face: } B_h \]

For cylinder: \(\frac{1}{2} A (l_1 + l_2) \)

Pyramid or Cone, Right and Regular

\[S = \text{perimeter of base (P)} \times \frac{1}{2} \text{slant height (l): } \frac{1}{2} P_l \]
\[V = \text{area of base (B)} \times \frac{1}{8} \text{perpendicular height (h): } \frac{1}{8} B_h \]

Pyramid or Cone, Right, or Oblique, Regular or Irregular

\[V = \text{area of base (B)} \times \frac{1}{3} \text{perpendicular height (h): } \frac{1}{3} B_h \]
\[V = \frac{1}{3} \text{volume of prism or cylinder of same base and perpendicular height} \]
\[V = \frac{1}{2} \text{volume of hemisphere of same base and perpendicular height} \]

Frustum of Pyramid or Cone, Right and Regular, Parallel Ends

\[S = (\text{sum of perimeter of base (P) and top (p)}) \times \frac{1}{2} \text{slant height (l): } \frac{1}{2} l (P + p) \]
\[V = (\text{sum of areas of base (B) and top (b) + square root of their products}) \times \frac{1}{3} \text{perpendicular height (h): } \frac{1}{3} h (B + b + \sqrt{Bb}) \]

\[S = \text{Lateral or Convex Surface Area} \quad V = \text{Volume} \]

Figure 8-4
Surface Area and Volume of Solids
Page 1 of 3
Frustum of any Pyramid or Cone, Parallel Ends

\[V = \left(\text{sum of areas of base (B) and top (b)} + \sqrt{B \cdot b} \right) \times \frac{1}{8} \text{ perpendicular height (h): } \frac{1}{8} h \left(B + b + \sqrt{B \cdot b} \right) \]

Wedge, Parallelogram Face

\[V = \frac{1}{6} \text{ (sum of three edges (a, b, a) x perpendicular height (h)} \times \frac{1}{6} d (2a+b) \]

Prismatoid

\[V = \frac{1}{6} \text{ perpendicular height (h) x (sum of areas of base (B) and top (b) + 4 x area of section (M) parallel to bases and midway between them): } \frac{1}{6} h(B + b + 4M) \]

The Prismatoid formula applies also to any of the foregoing solids with parallel bases, to pyramids, cones and spherical sections, and to many solids with irregular surfaces.

Sphere

\[S = 4 \pi r^2 = \pi d^2 = 3.14159265 d^2 \]

\[V = \frac{4}{3} \pi r^3 = \frac{1}{6} \pi d^3 = 0.52359878 d^3 \]

Spherical Sector

\[S = \frac{1}{2} \pi r(4b + c) \]

\[V = \frac{2}{3} \pi r^3 b \]

Spherical Segment

\[S = 2 \pi r b = \frac{1}{4} \pi \left(4b^2 + c^2 \right) \]

\[V = \frac{1}{3} \pi b^2 \left(3r - b \right) = \frac{1}{24} \pi b \left(3c^2 + 4b^2 \right) \]

Spherical Zone

\[S = 2 \pi r b \]

\[V = \frac{1}{24} \pi b \left(3a^3 + 3c^2 + 4b^2 \right) \]

Circular Ring

\[S = 4 \pi^2 Rr \]

\[V = 2 \pi^3 Rr^2 \]

\(S = \text{Lateral or Convex Surface Area} \quad V = \text{Volume} \)

Figure 8-4

Surface Area and Volume of Solids

Page 2 of 3
Ungula of Right, Regular Cylinder

<table>
<thead>
<tr>
<th>Base = Segment, b a b</th>
<th>Base = Half Circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S = (2 \frac{r m - o \times \text{arc, b a b}}{r - o}) \frac{h}{r - o}$</td>
<td>$S = 2r h$</td>
</tr>
<tr>
<td>$V = \left(\frac{2}{3} m^3 - o \times \text{area, b a b} \right) \frac{h}{r - o}$</td>
<td>$V = \frac{2}{3} r^2 h$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base = Segment, c a c</th>
<th>Base = Circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S = (2m + p \times \text{arc, c a c}) \frac{h}{r + p}$</td>
<td>$S = r \pi h$</td>
</tr>
<tr>
<td>$V = \left(\frac{2}{3} n^3 + p \times \text{area, cac} \right) \frac{h}{r + p}$</td>
<td>$V = \frac{1}{2} r^2 \pi h$</td>
</tr>
</tbody>
</table>

Ellipsoid

$$V = \frac{1}{3} \pi r a b$$

Paraboloid

$$V = \frac{1}{2} \pi r^2 h$$

Ratio of corresponding volumes of a Cone, Paraboloid, Sphere, and Cylinder of equal height: $1:3 \quad 2:2 \quad 1:3 \quad 1:3$

Bodies Generated by Partial or Complete Revolution

- $l = \text{length of a curve}$
- $A = \text{area of a plane}$
- $r = \text{distance of center of gravity of line or plane from axis I - I}$
- For any angle of revolution, a°

$$\frac{2r \pi a^\circ}{360} = \text{length of arc described by center of gravity}$$

$$S = \text{length of curve x length of arc about axis} = l \frac{2r \pi a^\circ}{360}$$

For complete revolution, $S = 2r \pi l$

$$V = \text{area of plane x length of arc about axis} = A \frac{2r \pi a^\circ}{360}$$

For complete revolution, $V = 2r \pi A$

$S = \text{Lateral or Convex Surface Area}$

$V = \text{Volume}$

Figure 8-4

Surface Area and Volume of Solids

Page 3 of 3