PETERSBURG
JAMES A. JOHNSON AIRPORT

RUNWAY SAFETY AREA IMPROVEMENTS (PHASE II)
PROJECT No. 68329
AIP No. 3-02-0219-1209

DESIGN DATA

- AIRPORT TYPE: COMMERCIAL SERVICE
- RUNWAY CATEGORY: TRANSPORT
- RUNWAY INSTRUMENTATION: INSTRUMENT
- RUNWAY SURFACE: ASPHALT CONCRETE
- RUNWAY LIGHTING: MEDIUM-INTENSITY RUNWAY LIGHTING (MRL)
- AIRPORT ELEVATION: 107' (MSL) / 117' (MLLW)
- AIRPORT REFERENCE POINT: Latitude N 56° 48' 04.64"
 Longitude W 132° 56' 49.87"
- RUNWAY SAFETY AREA WIDTH: 500' PROPOSED, 190' EXISTING
- RUNWAY OBJECT FREE-area WIDTH: 800'
- DESIGN AIRCRAFT: BOEING 737-800

As-Built

ALASKA AIP NO. 3-02-0219-1209

Date: 1/12/09

State of Alaska
Department of Transportation
and Public Facilities
Southeast Region

Runway Safety Area

This page contains information about the design data for Petersburg James A. Johnson Airport. The runway category is transport, and the runway surface is asphalt concrete. The runway lighting is medium-intensity runway lighting (MRL). The airport elevation is 107' (MSL) / 117' (MLLW). The runway safety area width is 500' proposed and 190' existing. The design aircraft is BOEING 737-800.
HORIZONTAL CONTROL

Horizontal Control for this project is based on the DOT/FY 2001 PGS Grid

The DOT/FY Petersburg Grid-2001 System is a local ground coordinate system based on NGS Primary Airport Control Baseline PGS-D. It relates to NASPGC zone 1 NASPGC through the following parameters:

Zone = NASPGC
ASPGC Zone 1

Grid Scale = 1:9,999,999

Convergence = +0°.011

Translation about NGS point PGS-D as follows:

ASPGC Northing = 1816170.3878 FT US
ASPGC Easting = 2023258.3470 FT US
Local Northing = 300000.0000 FT US
Local Easting = 300000.0000 FT US

Basis of Coordinates for this project established with SIO/PRO static GPS processing and Starmet least squares adjustment.

Project Specific Basis of Horizontal Control

PGS-D: POINT 13:
- Point in Sackville Road inside PVC near North VASIS light at East and runway.
- PGS-D: N 300000.0000 FT US, E 200000.0000 FT US
- ASPGC: N 1816170.5001 FT US, E 2023269.3493 FT US

PGS-A: POINT 18:
- 3' fenceline east of runway sign 21-4.
- PGS-D: N 300004.1483 FT US, E 2001957.6233 FT US
- ASPGC: N 1816125.5175 FT US, E 2023291.7005 FT US

VERTICAL CONTROL

The Vertical Datum for PGS Grid-2001 is NAVD 88 (NGVD 29) using NAVD88 Harried Datum tide datum based on third order levels and supplemented with GEDC '90 Marked Heights. The basis of vertical control is

NOSGA BM143A having a published elevation of 25.82 above MLLW on the 1960-1978 epoch.

Sedich GPS sessions and geod 90 were used to transfer elevation to NAVD 88 PGS-D in July 2001.

The Project Specific Basis of Vertical Control: In PGS-D having an accepted elevation of

103.23 feet above MLLW.

Vertical Control Note: Generally all field work is conducted on a mean sea level (MSL) datum for FAA compliance. This project was based on other projects in the area and it was decided to stick with our MLLW datum. To compute MSL elevations for this project, simply subtract 0.50 feet.

EXISTING CONTROL MONUMENTS

<table>
<thead>
<tr>
<th>POINT</th>
<th>LOCAL NORTH</th>
<th>LOCAL EAST</th>
<th>ONSHORE ELEV. (MLLW)</th>
<th>RUNWAY STATION</th>
<th>OFFSET</th>
<th>DESC</th>
<th>LAT</th>
<th>LON</th>
<th>ASPGC NORTH</th>
<th>ASPGC EAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>380056.998</td>
<td>220366.998</td>
<td>103.23</td>
<td>113-20.98</td>
<td>188.34</td>
<td>PGS-D: 95-PSGD-PSG-D</td>
<td>60.4918777</td>
<td>120.5699460</td>
<td>281685.000</td>
<td>281685.000</td>
</tr>
<tr>
<td>18</td>
<td>380045.1485</td>
<td>220317.3233</td>
<td>107.64</td>
<td>70.957</td>
<td>254.35</td>
<td>PGS-D: 95-PSGD-PSG-D-A</td>
<td>60.4918770</td>
<td>120.5569460</td>
<td>281685.000</td>
<td>281685.000</td>
</tr>
<tr>
<td>22</td>
<td>311731.4861</td>
<td>223734.3156</td>
<td>103.39</td>
<td>71.15</td>
<td>335.58</td>
<td>PGS-D: 95-PSGD-PSG-D-B</td>
<td>60.4928773</td>
<td>120.5439460</td>
<td>281685.000</td>
<td>281685.000</td>
</tr>
<tr>
<td>23</td>
<td>380056.998</td>
<td>220366.998</td>
<td>103.23</td>
<td>113-20.98</td>
<td>188.34</td>
<td>PGS-D: 95-PSGD-PSG-D-C</td>
<td>60.4918773</td>
<td>120.5699460</td>
<td>281685.000</td>
<td>281685.000</td>
</tr>
</tbody>
</table>

DO NOT SCALE FROM THESE DRAWINGS USE DIMENSIONS.
RSA WIDENING SECTION

STA. 2+00.00 TO STA. 4+00.00

- **NOTES:**
 1. BETWEEN STATIONS 2+00 AND 4+00, USE EXISTING RSA EDGE AT 96 FOOT FROM RW CENTERLINE FOR GRADE CONTROL.
 2. USE TEMPORARY SEEDING AS STABILIZING MEASURE AS REQUIRED OR DIRECTED.
 3. DISPOSE OF WASTE MUNICIPAL MATERIAL OBTAINED FROM EXCAVATIONS IN DESIGNATED WASTE AREAS.
 4. MATCH EXISTING RSA AT APPROXIMATELY STATION 4+00. SEE PLAN VIEW FOR AREAS TO BE FILLED ONLY AS DIRECTED.

NEW RUNWAY SECTION

STA. 64+00.00 TO STA. 70+960'

* OR STEEPEST SLOPE

THIS 1.1' DEPTH FILLED WITH APPROX. 3000 TONS OF BORROW, 3" MINUS, REMOVAL WILL BE REQUIRED DURING PHASE III. (SEE SHEET 2/B6)
RUNWAY SAFETY AREA SECTION
STA. 70+00.00 TO STA. 74+00.00
68+00

UNCLASSIFIED EXCAVATION LIMITS
6" MIN. SUITABLE MATERIAL OR BORROW
6" BORROW, 3-INCH MINUS
2% SLOPE, 3-INCH MINUS

EXISTING GROUND

DO NOT SCALE FROM THESE DRAWINGS USE DIMENSIONS
NOTES:

1. THESE PAPI DIGOUT DETAILS APPLY TO BOTH PAPI LOCATIONS: NORTH AND SOUTH RWD.
 THE DIGOUT MODELS FOR EACH LOCATION ARE DIFFERENT (20 FT AND 30 FT) AND MUST BE REFERRED TO THE RUNWAY CENTERLINE FOR THE 20 FT RIGHT INSTALLATION.
 CONSTRUCT THE TRANSFORMER BLISTER PAD AT STATION 24+19 RIGHT AS SHOWN IN DETAIL B4.

PAPI DIGOUT SECTION

B4 N.T.S. SECTION A-A

PAPI DIGOUT PLAN

B4 N.T.S. PLAN VIEW

TRANSFORMER BLISTER PAD

B4 N.T.S. 58+00 RIGHT

DO NOT SCALE FROM THESE DRAWINGS USE DIMENSIONS
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PAY ITEM</th>
<th>PAY UNIT</th>
<th>QUANTITY</th>
<th>ACTUALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-179A</td>
<td>CVERGJGAL ALUMINUM F/F, 1 7/8 INCH</td>
<td>LINEAR FOOT</td>
<td>666</td>
<td>555</td>
</tr>
<tr>
<td>G-150A</td>
<td>MOBILIZATION AND DECONTRACTON</td>
<td>LINEAR FOOT</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>G-155A</td>
<td>WORKER MEALS AND LODGING, OR PER DIEM</td>
<td>LUMP SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>G-174A</td>
<td>ENGINEERING TRANSPORTATION (TROLLEY)</td>
<td>EACH</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>G-175A</td>
<td>CONSTRUCTION SURVEYING BY THE CONTRACTOR</td>
<td>LUMP SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>G-220H</td>
<td>EXTRA THREE PERSON SURVEY PARTY</td>
<td>HOUR</td>
<td>40</td>
<td>3,487</td>
</tr>
<tr>
<td>G-706A</td>
<td>AIRPORT FLAGGER</td>
<td>CONTINGENT SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>G-706C</td>
<td>AIRPORT TRAFFIC MAINTENANCE</td>
<td>LUMP SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>P-152A</td>
<td>UNCLASSIFIED EXCAVATION</td>
<td>LUMP SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>P-152B</td>
<td>BORROW</td>
<td>TON</td>
<td>340.0</td>
<td>235.97</td>
</tr>
<tr>
<td>P-152C</td>
<td>BORROW, 3-INCH MINUS</td>
<td>TON</td>
<td>30,000</td>
<td>43,037</td>
</tr>
<tr>
<td>P-152D</td>
<td>BORROW, DITCH Lining</td>
<td>TON</td>
<td>4,000</td>
<td>4,028</td>
</tr>
<tr>
<td>P-157A</td>
<td>EROSION, SEDIMENT, AND POLLUTION CONTROL ADMINISTRATION</td>
<td>LUMP SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>P-157B</td>
<td>TEMPORARY EROSION, SEDIMENT, AND POLLUTION CONTROL</td>
<td>CONTINGENT SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>P-157C</td>
<td>EROSION, SEDIMENT, AND POLLUTION CONTROL, PRE-ADJUSTMENT</td>
<td>CONTINGENT SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>P-157D</td>
<td>SPILLS/MAINTENANCE</td>
<td>LUMP SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>P-157F</td>
<td>DUMP, LANDFILLING</td>
<td>HOUR</td>
<td>480</td>
<td>418.50</td>
</tr>
<tr>
<td>P-161A</td>
<td>TEMPORARY CHECK DAMS</td>
<td>EACH</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>P-161A</td>
<td>TEMPORARY SEEDING</td>
<td>EACH</td>
<td>20</td>
<td>208</td>
</tr>
<tr>
<td>P-165A</td>
<td>QUANTITY INTERCEPTION / DIVERSION DITCH</td>
<td>LINEAR FOOT</td>
<td>6,209</td>
<td>2,937</td>
</tr>
<tr>
<td>P-165B</td>
<td>RAMPING-RAMP NOT USED</td>
<td>LUMP SUM</td>
<td>ALL REQUIRED</td>
<td>ALL REQ'D</td>
</tr>
<tr>
<td>P-165C</td>
<td>EXCAVATION AND DISPOSAL OF PAVEMENT (AC)</td>
<td>SQUARE YARD</td>
<td>4,800</td>
<td>3,884</td>
</tr>
<tr>
<td>P-165D</td>
<td>GEOTEXTILE, SEPARATION</td>
<td>SQUARE YARD</td>
<td>600</td>
<td>563</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM</th>
<th>FACTOR/QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-153A</td>
<td>BORROW</td>
<td>1.66 TON/SCY</td>
</tr>
<tr>
<td>P-153B</td>
<td>BORROW, 3-INCH MINUS</td>
<td>1.80 TON/SCY</td>
</tr>
<tr>
<td>P-153C</td>
<td>BORROW, DITCH LINING</td>
<td>1.80 TON/SCY</td>
</tr>
</tbody>
</table>
D-701 CULVERT INSTALLATION SUMMARY

<table>
<thead>
<tr>
<th>PIPE NO.</th>
<th>RW STATION</th>
<th>OFFSET</th>
<th>INVERT</th>
<th>OUTLET</th>
<th>RW STATION</th>
<th>OFFSET</th>
<th>INVERT</th>
<th>48° CAP</th>
<th>72° CAP</th>
<th>GRADE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1</td>
<td>69 + 80 R</td>
<td>303.80</td>
<td>51.6</td>
<td>305.80</td>
<td>51.6</td>
<td>515</td>
<td>3.24%</td>
<td>10 GAUGE ALUMINUM / ALUMINUM ALLOY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.2</td>
<td>69 + 77 R</td>
<td>301.40</td>
<td>54.0</td>
<td>301.40</td>
<td>54.0</td>
<td>58</td>
<td>1.80%</td>
<td>10 GAUGE ALUMINUM / ALUMINUM ALLOY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EARTHWORK SUMMARY

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>P-152A UNCLASSIFIED EXCAVATION</th>
<th>P-152B BORROW</th>
<th>P-152D BORROW 3-INCH MINUS</th>
<th>P-152D BORROW DITCH LINING</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-SECTIONS, BM520 TO BM522</td>
<td>44,607 CY</td>
<td>84,120 CY</td>
<td>10,540 CY</td>
<td>–</td>
</tr>
<tr>
<td>NEW RW BM519 TO BM506</td>
<td>37,505 CY</td>
<td>37,505 CY</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>WASTE CONTAINMENT BERM AT DRP</td>
<td>–</td>
<td>15,000 CY</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>WASTE CONTAINMENT BERM AT APRON</td>
<td>–</td>
<td>8,895 CY</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ART ACCESS ROAD</td>
<td>125 CY</td>
<td>8,34 CY</td>
<td>480 CY</td>
<td>–</td>
</tr>
<tr>
<td>PIPE BEDDING, DITCH LINING, SLOPE PROTECTION</td>
<td>–</td>
<td>–</td>
<td>960 CY</td>
<td>1,800 CY</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>82,796 CY</td>
<td>107,340 CY</td>
<td>14,930 CY</td>
<td>1,800 CY</td>
</tr>
<tr>
<td>ESTIMATING FACTOR</td>
<td>NO CONVERSION</td>
<td>1.00 TON CY</td>
<td>1.00 TON CY</td>
<td>1.00 TON CY</td>
</tr>
<tr>
<td>TOT.</td>
<td>82,796 CY</td>
<td>204,200 TON</td>
<td>26,516 TON</td>
<td>3,240 TON</td>
</tr>
<tr>
<td>ADJ</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>TOTALS (Rounded)</td>
<td>82,796 CY</td>
<td>204,200 TON</td>
<td>26,516 TON</td>
<td>3,240 TON</td>
</tr>
</tbody>
</table>

NOTES:

1. ESTIMATED AS 20% CONSOLIDATION OF THE PAINT LAYER THICKNESS AFTER PAINT EROSION NEEDS FOR ENHANCEMENT CONSTRUCTION.
2. QUANTITY FOR UNCLASSIFIED EXCAVATION SUPPLIED AS SHEET ONLY.

SEE SHEET C1 FOR TOTALS

SUMMARY TABLES

- **PETERSBURG AIRPORT RUNWAY SAFETY AREA IMPROVEMENTS (PHASE II)**
- **PROJECT DESIGNATION:** ALASKA - DOT & PF 65329
- **FEDERAL - FAA AIR NO.:** 3-02-0219-1209
- **YEAR:** 2009

DO NOT SCALE FROM THESE DRAWINGS USE DIMENSIONS
STAGING FOR MS-4 (P-1)

1. Begin simultaneous excavation of left runway ditch and NSA construction set of station 90 + 00 to 100 + 00.
2. Construct the NSA embankment adjacent to the ditch of sufficient width to allow tailing and dumping operations.
3. Continue ditch excavation/NSA construction to proposed inlet of P-4. EVERY ALL WATER FROM MS-2, MS-3, and NSA-4 TO NEW LEFT DITCH AS PROGRESS ALLOWS. INSTALL SEDIMENT CONTROLS AS REQUIRED.
4. Construct NSA full width from station 80 + 00 to 100 + 00, including new left ditch.
5. Construct pipe P-1 as progress allows.
6. Once construction of the NSA and left ditch reach MS-2, it will be necessary to divert flows to MS-2 until the left ditch is extended to P-4. DURING CONSTRUCTION OF P-1, FLOWS FROM MS-4 WILL NEED TO BE DIVERTED TO MS-2.

Project As-Built Drawings have been reviewed by the Project Engineer and represent, to the best of my knowledge, the project as constructed. PE K.K. Date 1/10/00

DO NOT SCALE FROM THESE DRAWINGS USE DIMENSIONS
SLOPE ABOVE OUTFALL LINED WITH BORROW, DITCH LINING FOR APPROX. 10 FEET EACH SIDE FROM CENTERLINE OF THE PIPE

OUTFALL SECTION VIEW

CULVERT INLET/OUTFALL SECTION

HYDROLOGIC AND HYDRAULIC SUMMARY - P1

<table>
<thead>
<tr>
<th>EVENT TYPE</th>
<th>2%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETURN PERIOD</td>
<td>30-YEAR (666+)</td>
<td>150-YEAR (293+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>DESIGN DISCHARGE</td>
<td>26 CFS</td>
<td>26 CFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>DESIGN HIGH WATER ELEVATION</td>
<td>4.5 FEET BELOW CROWN OF PIPE</td>
<td>4.5 FEET BELOW CROWN OF PIPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

ANTICIPATED ADDITIONAL BACKWATER AT 0.560 FEET
GENERAL ESCP NOTES:
1. SEE APPENDIX D FOR THE ENVIRONMENTAL, PERMITS AND COMMITMENTS.
2. THE CONTRACTOR SHALL USE THIS ESPP AND SEDIMENT CONTROL PLAN (ESCP) TO DEVELOP STORM WATER POLLUTION PREVENTION PLAN (SWPPP) FOR EACH STAGE OF WORK. NO WORK WILL BE ALLOWED ON A SPECIFIC STAGE UNLESS THE SWPPP CONCERNING THAT SPECIFIC STAGE HAVE BEEN APPROVED AND IMPLEMENTED.
3. BMPs INTENDED TO TREAT ONLY STORM WATER RUNOFF COMING FROM DISTURBED AREAS. STORM WATER COMING FROM OUTSIDE THE PROJECT LIMITS, UNDISTURBED AREAS AND BASELINES ARE TO BE ISOLATED FROM EXISTING DRAINAGE CHANNELS AND AROUND SETTLING PONDS.
4. USE TEMPORARY EROSION CONTROL MEASURES AS REQUIRED TO PREVENT EROSION FROM ENTERING WATERS OF THE U.S. THESE ADDITIONAL CONTROL MEASURES MAY INCLUDE, BUT ARE NOT LIMITED TO:
 - TYPICAL SEEDING OF EXPOSED SLOPES
 - USE OF TEST FLOODS AT START IN SEDIMENT PONDS
 - APPLICATION OF SOIL STABILIZATION POLYMER TO ROADS OR EXPOSED SLOPES
 - APPLICATION OF STABILIZATION POLYMER TO LAWNS, ROOFS, WALKS, AND CONCRETE
 - APPLICATION OF AGGREGATE BASE COURSE MATERIALS TO HALL ROADS
 - APPLICATION OF FILTER AGGREGATE BASE COURSE TO HALL ROADS
 - USE OF DRAINAGE TRENCHES OR SALT BAGS
 - USE OF DRAINAGE TRENCHES OR SALT BAGS

5. THIS PROJECT WILL EXPAND THE RUNWAY SAFETY AREA AT THE JAMES A. JOHNSON AIRPORT IN PETERSBURG, ALASKA. THE WORK INCLUDES PLACING DIRT WORK THROUGH THE EMBANKMENT, EXPANDING THE EXISTING RUNWAY EMBANKMENT BY PLACING APPROXIMATELY 1044 CDU YARDS OF EMBANKMENT.
6. THE ESTIMATED TOTAL AREA OF DISTURBANCE, INCLUDING THE MINIMUM DIVISION, WASTE DISPOSAL AREA, AND WORK FOOTPRINT IS 113 ACRES.
7. THE SEDIMENT RATES FOR STORM WATER DISCHARGE ARE HAMMER, BLOWN CREEK, MILL, BLOWN CREEK, JOHNNY SALES CREEK, AND SEDIMENT CONTROL. ALL SEDIMENT DISCHARGE TO WATERS OF HAMMER, BLOWN CREEK, AND INTER-CREEK.
8. NO KNOWN THREATENED OR ENDANGERED SPECIES WILL BE AFFECTED BY THE PROJECT OR ITS STORM WATER DISCHARGES.
9. NO KNOWN HISTORIC SITES WILL BE AFFECTED BY THE PROJECT OR ITS STORM WATER DISCHARGES.
10. NO KNOWN HABITAT, PLANTS, OR CRONGS WITH TOTAL MAXIMUM DAILY LOADS (TMOL) WILL BE AFFECTED BY THE PROJECT OR ITS STORM WATER DISCHARGES.
11. SLT FENCE AROUND EACH END OF THE RUNWAY WAS REMOVED. OTHER BMP'S REMAIN IN PLACE THROUGH PHASE III.
V-DITCH CHECK DAM DETAILS

SECTION B-B

SECTION A-A

NOT INSTALLED
EROSION & SEDIMENT CONTROL DETAILS

PETERSBURG AIRPORT
RUNWAY SAFETY AREA IMPROVEMENTS
(PHASE II)

SECTION C-C

TRAPEZOIDAL DITCH CHECK DAM DETAILS

1. WELL GRADED CLEAN 8" MINUS SHOT ROCK AS
 USUALLY APPROVED BY THE ENGINEER. MATERIAL
 MUST FUNCTION ADEQUATELY FOR ITS INTENDED USE.
 SEE SECTION K-42.

SECTION D-D

NOTE:

NEW DITCH BANK

TOP OF DITCH

WELL GRADED CLEAN 8" MINUS SHOT ROCK

EXISTING GROUND

BASE OF

TRAPEZOIDAL DITCH

FLOW LINE

TOP OF DITCH

WELL GRADED CLEAN 8" MINUS SHOT ROCK

FLOW LINE OF DITCH

FLOW

FLOOR LINE OF DITCH

HIGH-STRENGTH DOUBLE STITCHED 1/2" TYPE SEAM

SECTION K4 N.T.S.

TOP VIEW

SEDIMENT FILTER BAG NOTES:

1. SEDIMENT FILTER BAG TO BE USED IN EROSION AREAS
 WHERE Dewatering IS REQUIRED AND AS INJECTED.
2. REPLACE BAG WHEN 50% FULL OR BECOMES CLOGGED.

SIDE VIEW

FLOW

HIGH-STRENGTH STRAPPING

FOR HOLDING HOSE IN PLACE

PUMP DISCHARGE HOSE

GRADING ACCOMMODATES

UP TO 4° DISCHARGE HOSE

SEDIMENT FILTER BAG

K4 N.T.S.

2. SEDIMENT FILTER BAG

FLOOR LINE OF DITCH

HIGH-STRENGTH STRAPPING

FOR HOLDING HOSE IN PLACE

PUMP DISCHARGE HOSE

GRADING ACCOMMODATES

UP TO 4° DISCHARGE HOSE

SIDING FILTER BAG

K4 N.T.S.

2. SEDIMENT FILTER BAG

FLOW

HIGH-STRENGTH STRAPPING

FOR HOLDING HOSE IN PLACE

PUMP DISCHARGE HOSE

GRADING ACCOMMODATES

UP TO 4° DISCHARGE HOSE

SIDING FILTER BAG

K4 N.T.S.

2. SEDIMENT FILTER BAG

FLOW

HIGH-STRENGTH STRAPPING

FOR HOLDING HOSE IN PLACE

PUMP DISCHARGE HOSE

GRADING ACCOMMODATES

UP TO 4° DISCHARGE HOSE

SECOND FILTER BAG

K4 N.T.S.
NOTES:
1. UTILIZE THE POSITION OF THE WASTE AREA EAST OF THE ACCESS ROAD TO THE MAXIMUM POSSIBLE EXTENT PRIOR TO USING THE AREA WEST OF THE ACCESS ROAD.
2. USING A 2" THICK LAYER OF SHOT ROCK, CONSTRUCT A TEMPORARY ACCESS ROAD AND OPERATIONS PAD TO ACCESS THE WASTE AREA TO THE EAST OF THE ACCESS ROAD.
3. USE PLUMPING AS NECESSARY TO DRAIN THE EAST WASTE AREA. ORGANIC PLUMPING IS RECOMMENDED.
4. PRIOR TO USING THE WASTE AREA WEST OF THE ACCESS ROAD.
5. CONSTRUCT CONTAINMENT BERM AS SHOWN OR AS APPROVED; SEE BERM DETAIL.
6. SEE SHEET 2 FOR PLANNING PHASE & PROFILE.
7. DEPOSIT WASTE BEHIND THE CONTAINMENT BERM. RAISE BERM ELEVATION AS NECESSARY.
8. USE PLUMPING AS NECESSARY TO DRAIN THE WEST WASTE AREA. DISCHARGE PUMPED WATER WEST OF THE CONTAINMENT BERM THROUGH A SEAWALL RAG.

Project As-Built Drawings have been reviewed by the Project Engineer and represent, to the best of my knowledge, the project as constructed.

PE
Date

DO NOT SCALE FROM THESE DRAWINGS USE DIMENSIONS
NOTES:
1. SEE SHEET DETAIL: ELEVATIONS SHOWN ARE APPROXIMATE.
2. WASTE STORAGE CAPACITY CALCULATIONS ASSUME TOP SURFACE OF WASTE AT 3 FEET BELOW BERM ELEVATIONS.

TOTAL ESTIMATED WASTE STORAGE: 44,000 CY

Project As-Built Drawings have been reviewed by the Project Engineer and represent, to the best of my knowledge, the project as constructed.

PE Date

DO NOT SCALE FROM THESE DRAWINGS USE DIMENSIONS